June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Development and evaluation of a new laser-assisted experimental model for Fuchs endothelial corneal dystrophy
Author Affiliations & Notes
  • Mahdy Ranjbar
    Dept. of Ophthalmology, University of Lubeck, Lubeck, Germany
    Laboratory for Angiogenesis and Ocular Cell Transplantation, University of Lubeck, Lubeck, Germany
  • Annekatrin Pahl
    Laboratory for Angiogenesis and Ocular Cell Transplantation, University of Lubeck, Lubeck, Germany
  • Johannes Rendenbach
    Laboratory for Angiogenesis and Ocular Cell Transplantation, University of Lubeck, Lubeck, Germany
  • Fred Reinholz
    Institute for Biomedical Optics, University of Lubeck, Lubeck, Germany
  • Salvatore Grisanti
    Dept. of Ophthalmology, University of Lubeck, Lubeck, Germany
  • Footnotes
    Commercial Relationships Mahdy Ranjbar, None; Annekatrin Pahl, None; Johannes Rendenbach, None; Fred Reinholz, None; Salvatore Grisanti, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 1172. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Mahdy Ranjbar, Annekatrin Pahl, Johannes Rendenbach, Fred Reinholz, Salvatore Grisanti; Development and evaluation of a new laser-assisted experimental model for Fuchs endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):1172.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: Fuchs endothelial corneal dystrophy (FECD) is characterized by progressive loss of corneal endothelial cells (CEC), alterations in the extracellular matrix and loss of vision. Existing disease models focus on the destruction of CEC through the application of toxic agents or genetic modifications. In this study, the possibility of an alternative, non-invasive, laser-assisted disease model for FECD was evaluated.

Methods: For the experiments, freshly enucleated porcine eyes were positioned in front of a conventional slit lamp combined with a Nd:YAG-laser. Laser spots were placed into the anterior chamber with varying energy levels and different distances to the corneal endothelium. Corneas were excised using a punch trephine and were then analyzed for laser-mediated lesions by light microscopy and two-photon microscopy.

Results: Aiming the laser at the anterior chamber results in the generation of a gas bubble, which spreads out. If the gas bubble is large enough it can hit the CEC and detach them machanically. Choosing higher laser energy levels and focusing closely behind the CEC resulted in larger areas with no CEC. However, in these cases a ruptured Descemet’s membrane was often observed and the laser damage even affected the corneal stroma. On the other hand, aiming the laser too deep into the anterior chamber or selecting lower energy levels resulted in no detectable laser-mediated effects on CEC. Nevertheless, it is possible to set a margin for the parameters to create lesions of CEC-free Descemet’s membrane without rupturing it.

Conclusions: Using a Nd:YAG-laser it is possible to produce small gas bubbles in the anterior chamber, which damage the corneal endothelium mechanically, leaving areas of bare Descemet’s membrane with no CEC attached. This non-invasive, laser-assisted technique can be used as an alternative experimental model for diseases with loss of CEC like FECD.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×