June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Systematic Evaluation of Noncoding Mutations in Inherited Retinal Degeneration (RD) Patients with Missing Heritability
Author Affiliations & Notes
  • Violet Gelowani
    Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
  • Eric Zaneveld
    Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
  • Feng Wang
    Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
  • Jason Scott Salvo
    Structural & Computational Biology & Molecular Biophysics (, Baylor College of Medicine, Houston, TX
  • Irma Lopez
    McGill University Health Centre, Montreal, QC, Canada
  • Huanan Ren
    McGill University Health Centre, Montreal, QC, Canada
  • Ruifang Sui
    Peking Union Medical College Hospital, Beijing, China
  • Robert K Koenekoop
    McGill University Health Centre, Montreal, QC, Canada
  • Rui Chen
    Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
  • Footnotes
    Commercial Relationships Violet Gelowani, None; Eric Zaneveld, None; Feng Wang, None; Jason Salvo, None; Irma Lopez, None; Huanan Ren, None; Ruifang Sui, None; Robert Koenekoop, None; Rui Chen, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 1239. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Violet Gelowani, Eric Zaneveld, Feng Wang, Jason Scott Salvo, Irma Lopez, Huanan Ren, Ruifang Sui, Robert K Koenekoop, Rui Chen; Systematic Evaluation of Noncoding Mutations in Inherited Retinal Degeneration (RD) Patients with Missing Heritability. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):1239.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: Among all reported mutations underlying human inherited diseases, only a very small fraction is from noncoding regions, largely due to the limitations of current detection methods and current inability to predict and interpret the functional consequences of these mutations. We set out to systematically evaluate the contribution of noncoding mutations to the RD cohort(LCA, RP, STGD, USHER). A combination of statistics, bioinformatics and experimental approaches was used to identify and validate mutations missed by exon capture sequencing (ExonCapSeq).

Methods: Copy number variations (CNV) were screened for in 32 patients by custom designed high density array comparative genomic hybridization (aCGH). Noncoding mutations were identified by custom designed genomic capture sequencing. New bioinformatics tools identified potential noncoding mutations predicted to affect gene regulation, transcription, or translation. Experimental systems were established to assess the accuracy of the predictions.

Results: Analysis of this large cohort reveals that the number of patients carrying single exonic mutations in known recessive RD genes is up to 5 times higher than in controls. Particularly, 8 genes were found to be enriched (p< 0.05) for single hits and an additional 10 genes were suggestive of enrichment. No pathogenic CNVs were found. Analysis of the complete genomic sequences of these 18 genes in 129 patients resulted in identification of potential pathogenic noncoding mutations for 38 patients in 8 genes. 16 are splice mutations and 4 appear to create new miRNA binding. The remaining 18 noncoding mutations occurred multiple times in patients but have never been observed in controls, allowing a statistical argument for their disease association. To validate the splice site mutations, RNA experiments have been conducted and 4 of the 5 mutations tested were confirmed to alter gene splicing. Functional validation of additional noncoding mutations is currently underway.

Conclusions: Leveraging on the large patient cohort, our study systematically evaluated the disease contribution of mutations that are undetectable by ExonCapSeq. We found that CNVs are likely a rare cause of RD. In contrast, mutations in noncoding regions can contribute to the inheritance of RD. Therefore, with the advent of WGS, it is increasingly important and feasible to annotate mutations in intronic regions.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×