June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cell
Author Affiliations & Notes
  • Fiona McDonnell
    University College Dublin, Dublin, Ireland
  • Abbot F Clark
    North Texas Eye Research Institute, Fort Worth, TX
  • Colm J O'Brien
    Mater Misericordiae University Hospital, Dublin, Ireland
  • Deborah Wallace
    Mater Misericordiae University Hospital, Dublin, Ireland
  • Footnotes
    Commercial Relationships Fiona McDonnell, None; Abbot Clark, None; Colm O'Brien, None; Deborah Wallace, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 3657. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Fiona McDonnell, Abbot F Clark, Colm J O'Brien, Deborah Wallace; Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cell. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):3657.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: Fibrosis and a hypoxic environment are associated with the trabecular meshwork (TM) region in the blinding disease glaucoma. Hypoxia has been shown to alter DNA methylation, an epigenetic mechanism involved in regulating gene expression such as the pro-fibrotic transforming growth factor (TGF) β1 and the anti-fibrotic Ras protein activator like 1 (RASAL1). The purpose of this study was to compare DNA methylation levels, and the expression of TGFβ1 and RASAL1 in primary human normal (NTM) with glaucomatous (GTM) cells and in NTM cells under hypoxic conditions.

Methods: Global DNA methylation was assessed by ELISA in cultured age-matched NTM and GTM cells. qPCR was conducted for DNA methyltransferases (DNMTs), methyl-CpG-binding protein 2 (MeCP2), TGFβ1, collagen 1α1 (COL1A1), and RASAL1 expression. Western immunoblotting was used to determine protein expression. For hypoxia experiments, NTM cells were cultured in a 1%O2/ 5%CO2 and 37oC environment. NTM and GTM cells were treated with TGFβ1 (10ng/ml) and the methylation inhibitor 5-azacytidine (5-aza) (0.5μM) respectively to determine their effects on DNMT1 and RASAL1 expression.

Results: We found increased DNA methylation, increased TGFβ1 expression and decreased RASAL1 expression (P<0.05) in GTM cells compared to NTM cells. Similar results were obtained in NTM cells under hypoxic conditions. TGFβ1 treatment increased DNMT1 and COL1A1, and decreased RASAL1 expression in NTM cells (P<0.05). 5-aza treatment decreased DNMT1, TGFβ1 and COL1A1 expression (P<0.05), and increased RASAL1 expression in GTM cells.

Conclusions: TGFβ1 and RASAL1 expression, global DNA methylation, and expression of associated methylation enzymes were altered between NTM and GTM cells. We found that hypoxia in NTM cells induced similar results to the GTM cells. Furthermore, DNA methylation, TGFβ1 and RASAL1 appear to have an interacting relationship that may play a role in driving pro-fibrotic disease progression in the glaucomatous TM.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×