June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Pigment Epithelium-Derived Factor of Glial Origin enhances Survival of Retinal Ganglion Cells
Author Affiliations & Notes
  • Jan D Unterlauft
    Department of Ophthalmology, Universitaets-Augenklinik Leipzig, Leipzig, Germany
  • Helena Savkovic-Cvijic
    Department of Ophthalmology, Universitaets-Augenklinik Leipzig, Leipzig, Germany
  • Peter MH Wiedemann
    Department of Ophthalmology, Universitaets-Augenklinik Leipzig, Leipzig, Germany
  • Wolfram Eichler
    Department of Ophthalmology, Universitaets-Augenklinik Leipzig, Leipzig, Germany
  • Footnotes
    Commercial Relationships Jan Unterlauft, None; Helena Savkovic-Cvijic, None; Peter Wiedemann, None; Wolfram Eichler, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 5835. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Jan D Unterlauft, Helena Savkovic-Cvijic, Peter MH Wiedemann, Wolfram Eichler; Pigment Epithelium-Derived Factor of Glial Origin enhances Survival of Retinal Ganglion Cells . Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):5835.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: Retinal neurodegeneration secondary to diabetic and hypertensive retinopathy and glaucoma can lead to irreversible loss of vision and is today among the leading causes of blindness worldwide. Our purpose was to show that pigment epithelium-derived factor (PEDF), secreted by the retinal pigment epithelium and Müller glial cells (MGC), exerts neuroprotective and neurotrophic actions towards retinal ganglion cells (RGC) in a cell culture model.

Methods: Homotypic and co-culture experiments using immunoisolated primary RGC and cultured Müller glial cells were conducted for 24 hours under normoxic (95% air; 5% CO2) and hypoxic conditions (0% O2; 5% CO2; 95% N2). PEDF was substituted to homotypic RGC cultures or depleted from RGC/MGC co-cultures by adding appropriate antibodies or by pretreatment of MGC with appropriate small interfering RNA (siRNA) directed against PEDF encoding RNA.

Results: After 24 hours of normoxic treatment RGC survival rate was 54.04±0.03% in homotypic and 68.52±0.03% in co-cultures (p<0.05). Corresponding hypoxic survival rates were 32.84±0.02% in homotypic and 44.83±0.02% in co-cultures (p<0.01). Supplementing PEDF in homotypic cultures led to a significant increase of surviving RGC both under normoxic and hypoxic conditions. PEDF depletion in co-cultures by added antibodies or pretreatment of MGC with siRNA against PEDF led to a significant decrease of RGC survival rate again under normoxic and hypoxic culture conditions.

Conclusions: Glia-derived PEDF exerts neuroprotective/ neurotrophic actions towards RGC in cell culture. Further experiments are needed to reveal the underlying mode of action and to prove the effectiveness of PEDF in a mammalian model.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×