September 2016
Volume 57, Issue 12
Open Access
ARVO Annual Meeting Abstract  |   September 2016
Automatic detection of hemorrhages on color fundus images using deep learning
Author Affiliations & Notes
  • Mark J J P van Grinsven
    Radiology & Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
  • Freerk Venhuizen
    Radiology & Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
  • Bram van Ginneken
    Radiology & Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
  • Carel C B Hoyng
    Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
  • Thomas Theelen
    Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
  • Clara I Sanchez
    Radiology & Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
  • Footnotes
    Commercial Relationships   Mark van Grinsven, None; Freerk Venhuizen, None; Bram van Ginneken, None; Carel Hoyng, None; Thomas Theelen, None; Clara Sanchez, None
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science September 2016, Vol.57, 5966. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Mark J J P van Grinsven, Freerk Venhuizen, Bram van Ginneken, Carel C B Hoyng, Thomas Theelen, Clara I Sanchez; Automatic detection of hemorrhages on color fundus images using deep learning. Invest. Ophthalmol. Vis. Sci. 2016;57(12):5966.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : The presence of hemorrhages is one of the common signs of diabetic retinopathy (DRP), a vision threatening retinal disease affecting patients with diabetes. Automatic detection of hemorrhages is important to facilitate the timely detection of patients that would benefit from treatment to slow down or prevent disease progression to vision-threatening stages of DRP. We report an automatic system based on deep learning to automatically detect hemorrhages on color fundus images.

Methods : Data was drawn from two public datasets (Kaggle and Messidor) by selecting images with sufficient quality, including a total of 4624 and 1102 images, respectively. The Kaggle set was split into a development (4048) and an evaluation set (576). The Messidor set was solely used as external evaluation set. A reference observer indicated presence of hemorrhages for all images and marked their locations in the development set. Two human experts also scored the test sets for presence of hemorrhages. An automatic system based on deep learning, employing a convolutional neural network (CNN), was developed to identify images with hemorrhages. The CNN consisted of 5 convolutional layers, a fully connected layer, and a final classification layer. The CNN used 41x41 pixel sized color patches as input in the first layer. In each convolutional layer, inputs were convolved using small sized filters and the response maps were forwarded to the next layer. In the last layer, an image score indicating the likelihood for the presence of hemorrhages was generated. Evaluation was done by comparing system results and human ratings with the reference.

Results : The reference observer marked 99 and 289 images as containing hemorrhages; and 477 and 813 as controls in the two test sets. The automatic system achieved areas (Az) under the receiver operating characteristics (ROC) curve of 0.957 and 0.968 with sensitivity/specificity pairs of 0.889/0.912 and 0.931/0.888, whereas the human experts achieved sensitivity/specificity of 0.919/0.979 and 0.899/0.977 in the Kaggle test set; and 0.976/0.894 and 0.958/0.872 in the Messidor test set.

Conclusions : An automatic system was developed for the detection of hemorrhages on color fundus images. The system approaches human expert performance and allows for a fast and reliable identification of patients with moderate to severe DRP in a screening setup.

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.

 

ROC analysis on the Kaggle test set.

ROC analysis on the Kaggle test set.

 

ROC analysis on the Messidor set.

ROC analysis on the Messidor set.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×