September 2016
Volume 57, Issue 12
Open Access
ARVO Annual Meeting Abstract  |   September 2016
Analysis by NASA’s VESGEN Software of Vascular Branching in the Human Retina with a Ground-Based Microgravity Analog
Author Affiliations & Notes
  • Patricia A Parsons-Wingerter
    Space Life Sciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States
  • Ruchi J Vyas
    Space Life Sciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States
  • Sneha Raghunandan
    Space Life Sciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States
  • Amanda C. Vu
    NASA SLSTP Summer Internship Program/ University of California Berkeley, Berkeley, California, United States
  • Susana B. Zanello
    Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States
  • Rob Ploutz-Snyder
    Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States
  • Giovanni Taibbi
    Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
  • Gianmarco Vizzeri
    Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
  • Footnotes
    Commercial Relationships   Patricia Parsons-Wingerter, None; Ruchi Vyas, None; Sneha Raghunandan, None; Amanda C. Vu, None; Susana B. Zanello, None; Rob Ploutz-Snyder, None; Giovanni Taibbi, None; Gianmarco Vizzeri, None
  • Footnotes
    Support  NASA NRA to P Parsons; NASA Human Research & SLSTP Programs
Investigative Ophthalmology & Visual Science September 2016, Vol.57, 1671. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Patricia A Parsons-Wingerter, Ruchi J Vyas, Sneha Raghunandan, Amanda C. Vu, Susana B. Zanello, Rob Ploutz-Snyder, Giovanni Taibbi, Gianmarco Vizzeri; Analysis by NASA’s VESGEN Software of Vascular Branching in the Human Retina with a Ground-Based Microgravity Analog. Invest. Ophthalmol. Vis. Sci. 2016;57(12):1671.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Significant risks for visual impairment were discovered recently in astronauts following spaceflight, especially after long-duration missions. We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal vasculature that precede visual and other ocular impairments. We therefore are analyzing retinal vessels in healthy subjects with NASA’s VESsel GENeration Analysis (VESGEN) software before and after head-down tilt (HDT), a ground-based microgravity analog.

Methods : Spectralis® infrared (IR) fundus images were collected from both eyes of 6 subjects before and after 70 days of bed rest at 6 degree HDT (NASA Campaign 11). For our retrospective study, branching patterns in arterial and venous trees are mapped by VESGEN into vessel branching generations (Gx) quantified by parameters that include densities of vessel length (Lv), area (Av), number (Nv) and fractal dimension (Df) as described previously for diabetic retinopathy (IOVS 51(1):498). Results are further assigned by VESGEN into groups of large (G1-3), medium (G4-6) and small (G≥7) vessels.

Results : All subjects remained asymptomatic throughout duration of HDT. To date, we have analyzed one IR image from each of the 12 eyes. Interestingly, two groups identified by VESGEN anlaysis within the masked study population are distinguished by the presence or absence of small veins (G≥7). For example, L≥7 and Av≥7 are 2.7±1.3 E-4 px/px2 and 7.2±3.6 E-4 px2/px2 in 6 retinas, but 0 in the other 6 retinas. Nonetheless, the space-filling properties of the entire venous trees were remarkably uniform by all parameters, such as Df = 1.56±0.02 for 6 retinas with G≥7 and 1.55±0.02 for retinas without G≥7. No small arteries (G≥7) were detected.

Conclusions : For our preliminary study of masked images, two groups of branching venous trees with and without small veins (G≥7) were clearly identified by VESGEN. Upon completing all images and unmasking the subject status of pre- and post-HDT, we will determine whether differences in the presence or absence of small veins are important correlates, and perhaps reliable predictors, of other ocular and physiological adaptations to prolonged head-down tilt and microgravity. Clinical methods for examining adaptive microvascular remodeling in the retina to microgravity space flight are currently not established.

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×