September 2016
Volume 57, Issue 12
Open Access
ARVO Annual Meeting Abstract  |   September 2016
Quantification of retinol production and removal in photoreceptors in the living primate eye using two-photon ophthalmoscopy
Author Affiliations & Notes
  • Robin Sharma
    Center for Visual Science, University of Rochester, Rochester, New York, United States
  • Christina Schwarz
    Center for Visual Science, University of Rochester, Rochester, New York, United States
  • Grazyna Palczewska
    Department of Medical Devices, Polgenix, Inc, Cleveland, Ohio, United States
  • Krzysztof Palczewski
    Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
  • David R Williams
    Center for Visual Science, University of Rochester, Rochester, New York, United States
    The Institute of Optics, University of Rochester, Rochester, New York, United States
  • Jennifer J Hunter
    Flaum Eye Institute, University of Rochester, Rochester, New York, United States
    Center for Visual Science, University of Rochester, Rochester, New York, United States
  • Footnotes
    Commercial Relationships   Robin Sharma, Polgenix, Inc. (F), University of Rochester (P); Christina Schwarz, Polgenix, Inc. (F); Grazyna Palczewska, Polgenix, Inc. (E); Krzysztof Palczewski, Polgenix, Inc. (C), US patent 7,706,863 (P), US patent 8,346,345 (P); David Williams, Canon, Inc. (R), Polgenix, Inc. (F), University of Rochester (P); Jennifer Hunter, Polgenix, Inc. (F), University of Rochester (P)
  • Footnotes
    Support  Research reported in this publication was supported by the National Eye Institute of the National Institutes of Health under Awards P30 EY001319, R01 EY022371 and R44AG043645. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Inst. of Health. This study was also supported by an Unrestricted Grant to the University of Rochester Department of Ophthalmology from Research to Prevent Blindness, New York and a research grant from Polgenix Inc.
Investigative Ophthalmology & Visual Science September 2016, Vol.57, 2213. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Robin Sharma, Christina Schwarz, Grazyna Palczewska, Krzysztof Palczewski, David R Williams, Jennifer J Hunter; Quantification of retinol production and removal in photoreceptors in the living primate eye using two-photon ophthalmoscopy. Invest. Ophthalmol. Vis. Sci. 2016;57(12):2213.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Two-photon autofluorescence (TPAF) of all-trans-retinol in the outer retina can be used to quantify the kinetics of intermediate stages of the visual cycle. Our previous attempts at characterization of retinol kinetics in the living eye during dark adaptation were complicated by the effects of the two-photon imaging beam (Sharma et al., ARVO 2015). Here, we have bypassed the need for dark adaptation and developed a rapid approach for measuring the production and removal of retinol under steady illumination.

Methods : A two-photon adaptive optics scanning light ophthalmoscope was used for imaging photoreceptors in two macaques. TPAF was excited at 730 nm at 7 mW and emission was recorded between 400-550 nm. 35 s after the onset of the imaging beam, a 640 nm light flash of 1-4 s duration was delivered to produce an additional increase and subsequent decrease in TPAF. The time course of the TPAF response to the incremental flash was fit with exponential functions to extract rate constants.

Results : The TPAF response of cones resolved in the image was weak because the cones were already bleached by the imaging beam. The rod response was much stronger, increasing rapidly with an exponential time constant of 1.2±0.5 s, and subsequently declining with a time constant of 76.6±7.2 s. This rate of retinol clearance measured under steady illumination is 1.6X faster than our previous measurements during dark adaptation in primates. The rate of retinol removal was faster than production, in agreement with previous studies in salamander, frog and mouse rods (Ala-Laurila et al., 2006, Wu et al., 2007, Chen et al., 2009). Despite the high light levels used for imaging, TPAF responses were repeatable over multiple trials and no detectable structural changes were observed in photoreceptor images.

Conclusions : This imaging scheme permits direct investigation of the pathways responsible for formation and removal of all-trans-retinol in rods. This provides a quantifiable measure of the visual cycle, without the need for complete dark adaptation, which is a shortcoming of conventional methods. This approach facilitates the use of in vivo two-photon ophthalmoscopy for rapid, objective assessment of photoreceptor function in the normal eye and in the diseased eye before and after pharmacological intervention.

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×