September 2016
Volume 57, Issue 12
Open Access
ARVO Annual Meeting Abstract  |   September 2016
Visualization of retinal pigment epithelial cells using adaptive optics enhanced indocyanine green imaging
Author Affiliations & Notes
  • Johnny Tam
    National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
  • Jianfei Liu
    National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
  • Alfredo Dubra
    Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
    Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
  • Robert N Fariss
    National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
  • Footnotes
    Commercial Relationships   Johnny Tam, None; Jianfei Liu, None; Alfredo Dubra, US Patent 8556428 (P); Robert Fariss, None
  • Footnotes
    Support  Intramural Research Program of the National Eye Institute, National Institutes of Health; Glaucoma Research Foundation Catalyst for a Cure Initiative; NIH Grant U01-EY025477.
Investigative Ophthalmology & Visual Science September 2016, Vol.57, 4634. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Johnny Tam, Jianfei Liu, Alfredo Dubra, Robert N Fariss; Visualization of retinal pigment epithelial cells using adaptive optics enhanced indocyanine green imaging. Invest. Ophthalmol. Vis. Sci. 2016;57(12):4634.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : To demonstrate the use of indocyanine green (ICG) in combination with adaptive optics (AO) in human subjects (AO-ICG) and to evaluate the uptake of ICG into retinal pigment epithelial (RPE) cells in the late phase.

Methods : An adaptive optics scanning light ophthalmoscope (AOSLO) was custom-outfitted with multimodal imaging capabilities which enabled the simultaneous collection of four different types of AOSLO images from a single 790 nm light source: confocal reflectance, split detection, dark field, and ICG fluorescence (810-840 nm detection using less than 100 µW of excitation light measured at the cornea). Multimodal AOSLO images of the inner retinal capillaries, photoreceptors, and RPE cells were acquired in six eyes of three human subjects with no history of ocular or systemic diseases. Image sequences were acquired at various time points before, during, and after the injection of ICG. In addition, histological studies in mice were carried out to confirm the specific localization of ICG to RPE cells in the late phase of ICG.

Results : Prior to the injection of ICG dye, no detectable AO-ICG fluorescence signal could be observed. Immediately after injection, detailed images of the vasculature could be seen, confirming both entry of ICG dye into the circulation, as well as successful detection of ICG fluorescence. Two hours post injection, a non-uniform AO-ICG signal was observed in the outer retina, despite the fact that no AO-ICG signal could be detected at the time in the retinal vasculature. The recorded patterns showed good correspondence to RPE cells which were simultaneously imaged using AO dark field. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histological studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection.

Conclusions : We demonstrate for the first time fluorescence imaging of ICG dye using the AOSLO in human subjects. The capability to simultaneously acquire four different adaptive optics modalities, namely, confocal reflectance, split detection, dark field, and ICG, significantly broadens the potential application of AOSLO for understanding disease. We also demonstrate a novel method for visualizing individual RPE cells in the living human eye, opening up new opportunities for evaluating the health and status of these cells in disease.

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×