September 2016
Volume 57, Issue 12
Open Access
ARVO Annual Meeting Abstract  |   September 2016
A full lifespan model of lens growth
Author Affiliations & Notes
  • Steven Bassnett
    Washington Univ Sch of Med, Saint Louis, Missouri, United States
  • Footnotes
    Commercial Relationships   Steven Bassnett, None
  • Footnotes
    Support  NIH Grant EY09852, Marie Curie Fellowship Grant FP7-PEOPLE-2013-IOF-622890-MoLeGro
Investigative Ophthalmology & Visual Science September 2016, Vol.57, No Pagination Specified. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Steven Bassnett; A full lifespan model of lens growth. Invest. Ophthalmol. Vis. Sci. 201657(12):.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Presentation Description : The size, shape, and internal composition of the vertebrate lens are modified continuously throughout life. To gain insights into the processes that specify these properties, we formulated a mathematical model of lens growth in the mouse. The model was used to chart the flow of cells within and between lens cell compartments and calculate the consequent rate of lens growth across the entire lifespan. Simulations obtained using the model were in good agreement with empirical measurements. For much of the lifespan, growth could be modeled adequately by adjusting two parameters only, the size of individual epithelial cells and their proliferative rates. However, modeling early lens development required shortening the duration of the cell cycle considerably. The growth of aged lenses could not be modelled without allowing significant (≈3-fold) compaction of extant fiber cells. These results have implications for the establishment of the lens refractive index gradient, the etiology of cortical cataract, and may provide an explanation for why there has never been a reported case of lenticular cancer.

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×