September 2016
Volume 57, Issue 12
Open Access
ARVO Annual Meeting Abstract  |   September 2016
Generation, Transplantation and In Vivo Imaging of Transplanted Embryonic Stem Cell-derived Retinal Ganglion Cells
Author Affiliations & Notes
  • Anna La Torre
    Cell Biology and Human Anatomy, UC Davis, Davis, California, United States
  • Xinlei Wang
    Cell Biology and Human Anatomy, UC Davis, Davis, California, United States
  • Pengfei Zhang
    Cell Biology and Human Anatomy, UC Davis, Davis, California, United States
  • Robert J Zawadzki
    Cell Biology and Human Anatomy, UC Davis, Davis, California, United States
    Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
  • Edward N Pugh
    Cell Biology and Human Anatomy, UC Davis, Davis, California, United States
    Department of Ophthalmology & Vision Science, University of California Davis, Davis, California, United States
  • Footnotes
    Commercial Relationships   Anna La Torre, None; Xinlei Wang, None; Pengfei Zhang, None; Robert Zawadzki, None; Edward Pugh, None
  • Footnotes
    Support  NIH EY012576
Investigative Ophthalmology & Visual Science September 2016, Vol.57, 6072. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Anna La Torre, Xinlei Wang, Pengfei Zhang, Robert J Zawadzki, Edward N Pugh; Generation, Transplantation and In Vivo Imaging of Transplanted Embryonic Stem Cell-derived Retinal Ganglion Cells. Invest. Ophthalmol. Vis. Sci. 2016;57(12):6072.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Several pathologies result in retinal ganglion cell (RGC) degeneration and irreversible blindness. Stem cell-based cell replacement therapies offer promising novel approaches for vision restoration after RGC loss. However, to date successful cell replacement of RGCs remains a major challenge. We combined methods to differentiate Embryonic Stem Cells (ESCs) into retinal organoids to obtain donor RGCs with state-of-the-art imaging technologies to follow individual ESC-derived RGCs after transplantation in living rodents to accurately measure survival, migration and integration with the host to pinpoint all the barriers to cell engraftment.

Methods : We used a 3D culturing system to direct mouse ESC colonies towards retinal fates following a stepwise differentiation process that recapitulates the normal retinal developmental timeline. These cultures progressively developed into retinal progenitor cells and post-mitotic retinal neurons, including RGCs. Next, ESC-derived RGCs were transduced with AAV2-CMV-eGFP and the GFP+ cells were purified by FACS and transplanted intravitreally in adult C57Bl/6J mice. Fundus video camera (FVC) and scanning laser ophthalmoscopic (SLO) imaging were used to track the transplanted cells over time in intact living mice.

Results : We observed GFP+ transplanted cells surviving for long periods of time (up to 13 months) in the host retinas. Though absent immediately after transplantation, 4 months after the transplant, the GFP+ RGCs had sprouted linear processes, many of which exceeded 200 um of length, indicating that the developmental programs that lead to axogenesis can be activated in adult environments. Moreover, many of the transplanted GFP+ RGCs migrated substantially below the most superficial retinal blood vessels, suggesting possible migration in depth across the ILM.

Conclusions : Our data indicate that ESC-derived RGCs can survive and thrive in adult host retinas after transplantation. Further studies are underway to systematically identify the barriers to successful cell engraftment, and to test for successful synaptogenesis. A detailed understanding of the roadblocks of these technologies will lead us to specific interventions to treat RGC degenerations.

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×