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PURPOSE. In order to reduce noise and account for spatial
correlation, we applied disease mapping techniques to visual
field (VF) data. We compared our calculated rates of
progression to other established techniques.

METHODS. Conditional autoregressive (CAR) priors, weighted to
account for physiologic correlations, were employed to
describe spatial and spatiotemporal correlation over the VF.
Our model is extended to account for several physiologic
features, such as the nerve fibers serving adjacent loci on the
VF not mapping to the adjacent optic disc regions, the
presence of the blind spot, and large measurement fluctuation.
The models were applied to VFs from 194 eyes and fitted
within a Bayesian framework using Metropolis-Hastings algo-
rithms.

RESULTS. Our method (SPROG for Spatial PROGgression)
showed progression in 42% of eyes. Using a clinical reference,
our method had the best receiver operating characteristics
compared with the point-wise linear regression methods.
Because our model intrinsically accounts for the large variation
of VF data, by adjusting for spatial correlation, the effects of
outliers are minimized, and spurious trends are avoided.

CONCLUSIONS. By using CAR priors, we have modeled the spatial
correlation in the eye. Combining this with physiologic
information, we are able to provide a novel method for VF
analysis. Model diagnostics, sensitivity, and specificity show
our model to be apparently superior to current point-wise
linear regression methods. (http://www.anzctr.org.au number,
ACTRN12608000274370.) (Invest Ophthalmol Vis Sci. 2013;
54:1544–1553) DOI:10.1167/iovs.12-11226

One of the most important challenges in managing
glaucoma is detecting whether the visual field (VF) is

progressing. Once a glaucoma patient loses sight the damage is
irreversible; however, early detection of progression can lead
to treatment that can reduce vision loss.1 The most common
method for monitoring changes in the VF is through Standard
Automated Perimetry (SAP).2,3 Progression is judged by looking
at a series of SAP VF outputs over time. Due to the large
amounts of variation in the VF it is difficult to detect true

change from change due to measurement error and random
variation.4–6 Many analytical methods exist to help determine
progression. Currently, however, there is no consensus on the
gold standard for analyzing VF data. This often leads to
investigators developing their own methods to suit their
particular study.7

Ernest et al.8 reviewed literature prior to April 2009 and
found that 47% of studies using quantitative methods
calculated rates of progression, while the remainder dichoto-
mized the outcome. The main methods can be divided into
three categories: scoring methods, glaucoma change probabil-
ity analysis, and point-wise linear regression (PLR) analysis.
Other methods investigated include the VF index, neural
networks, and spatial filters. A comparison of progression
detection methods using a meta-analysis7 indicates that
methods predicting the highest rates of progression included
PROGRESSOR (Medisoft Ltd., Leeds, UK) (a form of PLR), the
Threshold Noiseless Trend program, and a qualitative clinical
method. The majority of the PLR methods using indices (e.g.,
mean deviation and VF index methods), and the PLR on
threshold values with tighter significance criteria gave lower
estimates of progression. However, due to the lack of a gold
standard it is also hard to compare methods to determine
whether one is better than another. Vesti et al.9(p3878) states
that ‘‘The ideal method for analyzing VF change should be
sensitive, detect progression with few examinations, maintain
high specificity, and be resistant to fluctuation,’’ and it has
been noted that a method which identifies the rate of
progression is of more benefit in determining the future of
vision loss, treatment, and thus quality of life in glaucoma
patients.10

We suggest that statistical techniques be employed to model
the spatial correlation of the VF data, which in turn will help
minimize variation in the VF data. Previously, a spatial filter was
introduced to take a weighted average of the surrounding
points.11 While this method succeeded in reducing variation, it
was also less sensitive,12 and did not take into account the
physiology of the eye, in that the VF locations along the
temporal horizontal midline do not map in adjoining locations
on the optic disc. Another spatial filter was created to explore
spatial correlations in VFs in order to reduce noise. This was
based upon the covariances between different points in the
eye.13 While this method seemed to increase sensitivity and
specificity in simulated data,13 it performed similarly to PLR
when tested on longitudinal data.14

While these methods attempt to account for the spatial
nature of the data, the spatial correlation structure of that data
can be modeled more flexibly by applying disease mapping
techniques to the VF dataset. These methods cannot be applied
blindly to our data since the VF has spatial properties that are
not encountered in geographical disease mapping. In particu-
lar, the spatial relationships on the VF arise from a somewhat
complicated projection from the retina. As mentioned above,
points may appear beside each other on the VF although they
do not necessarily project along an adjacent pathway to the
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optic disc. Also, the VF includes a blind spot corresponding to
the point where the optic nerve enters the eye.15 In the
following sections, we present our methodology, results from
fitting our model to data from the Lions Eye Institute trial
registry and Vein Pulsation Study in Glaucoma (Lions Eye
Institute, University of Western Australia), our discussion, and
conclusions.

METHODS

Participants

One hundred and ninety-four series of VFs (1448 fields in total) from 98

subjects were obtained from participants enrolled in the Vein Pulsation

Study Trial in Glaucoma (VPSG) and on the Lions Eye Institute trial

registry, in Perth, Western Australia. All 98 subjects had a form of open

angle glaucoma (OAG). One subject had OAG following successful laser

iridotomy for angle closure in one eye, the other eye being blind. Of

the remaining 97 subjects, eight eyes had pseudo-exfoliation syndrome

and five had pigment dispersion syndrome, with the rest (180 eyes)

having POAG. The average age was 66.9 years (SD 9.7), with 34% males

and 66% females. Informed consent was obtained for all participants.

The trial adhered to the tenets of The Declaration of Helsinki and was

approved by the University of Western Australia’s ethics committee.

The mean follow up time for participants was 2.5 years (range, 0.2–9.4

years), with an average of 7.5 VFs (range, 2–21) taken during this

period.

Standard Automated Perimetry

The Humphrey Field Analyzer (Carl Zeiss Meditec Inc., Dublin, CA)

measures the differential light sensitivity across the VF. Figure 1 depicts

a grid, which contains 54 test locations on the VF. At each cell the

subject receives a score ranging between zero to approximately 30 dB

on average, where a brighter light correlates with a lower decibel

reading. Decibels are measured on the log scale, where 1 log unit is

equivalent to 10 dB, and a change in 1 log unit is equivalent to a 10-fold

change in light sensitivity (apostilbs). Because 0 dB represents the

maximum light (10,000 apostilbs) tested on the Humphrey Field

Analyzer (Carl Zeiss Meditec Inc.), the subject’s score could

theoretically go below zero. We have taken this into account in our

statistical methods described later in this section.

The Humphrey Field Analyzer 24-2 program was used with white

on white stimulus size III. Fifteen participants from the registry used

full threshold SAP, while the 81 participants from the VPSG trial used

the Swedish Interactive Threshold Algorithm (SITA). Two participants

had a combination of full threshold and SITA exams. SITA is a faster

technique than the full threshold program, which maintains similar

variability properties; however, threshold estimates are approximately

1-dB higher than the with full threshold technique.17 Appropriate

adjustments were, therefore, made to the observed field thresholds of

participants using both techniques. All subjects had undergone at least

two VF tests before participating in the trial, thus, minimizing the

learning effect. VF output from left eyes were inverted allowing the

same modeling as right eyes.

Correlation Structure of Data

Following disease mapping ideology, we assume that points that

neighbor each other on the eye will be more similar than points that lie

farther apart. Therefore, we expect to see correlation in the spatial

pattern of vision loss, reflecting the underlying damage to the optic

disc, particularly within the sectors of each VF. In spatiotemporal

disease mapping, it is common to use conditional autoregressive (CAR)

models18,19 for the underlying mean process to describe the

dependence between regions sharing a common boundary. For the

most part a similar principle applies to the VF measurements, since

adjacent grid cells in the VF usually correspond to proximate areas on

the optic disc. However, there is more complexity across the

(horizontal) midline. Specifically, at the temporal side of the eye, pairs

of adjacent cells with one above the midline and one below that

correspond to highly separated pathways across the retina and into the

optic disc, such that they can be treated as essentially independent16

(see dotted line in Fig. 1 separating the superior temporal and inferior

temporal sections on the VF). We did consider splitting the temporal

sector (Fig. 1) into superior and inferior halves but the degree of

separation is not so clear compared with VF nasal fixation.20,21

Accordingly, we did not introduce any distinct bias in to the temporal

sector as defined by Garway-Heath.16 Another complication in the

retina is the blind spot, which if measured correctly will record values

of 0 dB, and, therefore, does not undergo vision loss in the same

manner as the rest of the eye.

An adjacency matrix is required to define which points in the VF

are neighboring. The denoted adjacencies allow for a weighted average

to be generated from the surrounding points. This information is then

used by the CAR prior detailed below in the Statistical Modeling

subsection (Equations 5, 6). We develop our adjacency matrix for the

VF based on physical adjacency in Figure 1 (left), adjusted to represent

the physiologic structure of the eye (Fig. 1, right). Because the sectors

at the midline on the temporal side are not adjacent on the optic disc,

the correlations do not cross the midline on the temporal side (i.e., grid

cells above and below are assumed independent). However, it is also

known that adjacent points within a sector are more likely to be similar

than adjacent points of different sectors. This is because the nerve

fibers from the same sector group together on the optic disc.

Therefore, we have chosen to weight points that are adjacent and

intrasector as 1, points that are adjacent and intersector as 0.3, and

points that are nonadjacent as 0. We also remove the two points closest

to the blind spot in constructing this adjacency matrix, as the behavior

of these points is independent from the other points in the temporal

sector, leaving 52 points for analysis.

Statistical Modeling

Having constructed the appropriate adjacency matrix, we are now in a

position to develop a model for the vision measurements. We let yik

denote the measurement taken at VF grid location i at time tk, where

the grid cells are numbered by row from top left to bottom right. These

are assumed to follow a normal distribution, but to be censored to the

left at zero, to account for the idea that a threshold of below zero could

be obtained if a higher light intensity, thus, a lower decibel was tested

on the Humphrey VF. That is, yik ¼max(y*
ik,0) where

y*
ikjlik ~Normalðlik; r

2
� Þ: ð1Þ

We implement our model within a Bayesian statistical framework. This

requires that model parameters are assigned prior distributions that

summarize any available prior information. The variance parameter r�2

describes the magnitude of variation due to measurement error. It is

assigned an inverse gamma as follows:

r2
� ~ InverseGamma ð5:6; 43:2Þ ð2Þ

An informative prior was allocated to r�2, as we had preexisting

information about the measurement error within the VF. A represen-

tative subset of 411 full threshold VFs from 34 eyes were examined.

The difference in retested loci within each field was used to estimate

variation. A mean variance of 9.4 dB (variance 36 dB) was calculated

for VF readings at individual loci (yik). Values for the prior were

converted to create an informative inverse gamma prior centered

around 9.4 dB with a scale of 36 dB.

The y*
ik are conditionally independent given lik. The spatial and

temporal dependence in the data are generated by the manner in

which we model lik. Specifically, we model the spatiotemporal

variation in the VF by

lik ¼ aþ di þ btk þ gi tk ð3Þ
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The overall eye mean is represented by a, and the overall temporal

trend described by b. CAR prior distributions are employed to account

for spatial correlated heterogeneity,22 as described below in Equations

4 to 6. The parameter di adjusts the mean for spatially correlated

heterogeneity at each individual locus, while gi adjusts the trend.

For the di parameter the prior is given by

dijdj; i„ j;r2
di

h i
~Normalðd̄i;r

2
di
Þ ð4Þ

where

d̄i ¼
1X

j„i

wij

0
BB@

1
CCA
X
j„i

wijdj ð5Þ

r2
di
¼ jdX

j„i

wij

0
BB@

1
CCA: ð6Þ

According to our adjacency matrix described earlier, wij ¼ 1 if i, j are

adjacent and of the same sector, wij¼ 0.3 if i, j are adjacent and not of

the same sector, and wij¼0 if they are nonadjacent. We employ a vague

prior for jd (jd ~ InverseGamma(1/2, e/2)) where e is a small constant,

in our case 0.01.19 Hence, the conditional posterior for jd is given by

jd � j
�n

2

d exp � 1

2jd
eþ

X
i~j

wijðdi � djÞ2
" #( )

: ð7Þ

A similar type of CAR prior is applied to the space–time effects, di,

where gi and rg
2 are defined as for di and rd

2. That is

gijgj; i„ j;r2
gi

h i
~Normalðḡi;r

2
gi
Þ: ð8Þ

A normal prior was employed for a (a ~ Normal (24, 18)) where 24 is

the mean threshold score and 18 is two times the SD across all loci of

all eyes at time point zero. The doubling of the SD was included to

reduce the influence of prior information. Time (tk from Equation 3) is

centered at zero with a SD of 0.5. We then assign a Cauchy prior to our

trend parameter (or global slope), b. When little is known of the trend

an uninformative prior Cauchy (0, 2.5) on a centered dataset with a SD

of 0.5 can be used.23 However, as we know more about the scale we

assign b ~ Cauchy (0, 5) instead of a scale 22.5 (2.5 times the SD of

yik).

Model Implementation

Models were fitted in R24 using Markov Chain Monte Carlo (MCMC)

methods. MCMC works by drawing simulations of model parameters

from a Markov chain whose stationary distribution matches the

required posterior distribution.25 The Metropolis-Hastings (MH)

algorithm is used to sample values from the Markov chain. A candidate

value (h) is generated from the proposal distribution. The acceptance

probability of h is calculated, and h is either accepted or rejected. If h is

accepted it replaces the existing value and, thus, the chain moves, if

rejected the existing value remains.25 Gibbs sampling is also used and is

a special case of the MH algorithm where all candidate values are

accepted. Random walk MH, where candidate values are sampled

dependent on the current value of the chain, was used for sampling a
and b.

We implemented the following component-wise transition MCMC

algorithm:

1. Set iteration counter z¼ 0 and initialize d(0), a(0), g(0), b(0), r
ð0Þ
d ,

r
ð0Þ
g , rð0Þ� as specified in the following steps;

2. Set z¼ z þ 1;

3. For i in 1-52, sample dðzÞi ,conditional on dðzÞ1:i�1, dðz�1Þ
iþ1:52, a(z�1),

g(z�1), b(z�1), r
ðz�1Þ
d , r

ðz�1Þ
g , rðz�1Þ

� using Equation 4;

4. Sample a(z) conditional on d(z), g(z�1), b(z�1), r
ðz�1Þ
d , r

ðz�1Þ
g ,

rðz�1Þ
� using random walk MH;

5. For i in 1–52, sample gðzÞi conditional on gðzÞ1:i�1, gðz�1Þ
iþ1:52, d(z), a(z),

b(z�1), r
ðz�1Þ
d , r

ðz�1Þ
g , rðz�1Þ

� using Equation 8;

6. Sample b(z) conditional on d(z), a(z), g(z), r
ðz�1Þ
d , r

ðz�1Þ
g , rðz�1Þ

�

using random walk MH;

7. Sample jðzÞd using Gibbs sampling (Equation 7) conditional on

d(z), a(z), g(z), b(z), r
ðz�1Þ
g , rðz�1Þ

� and, hence, calculate r
ðzÞ
d ;

8. Sample jðzÞg using Gibbs sampling (Equation 7) conditional on

d(z), a(z), g(z), b(z), r
ðzÞ
d , rðz�1Þ

� and, hence, calculate r
ðzÞ
g ;

9. Sample rðzÞ� conditional on d(z), a(z), g(z), b(z), r
ðzÞ
d , r

ðzÞ
g using

random walk MH; and

10. Repeat steps 2 through 9 until required number of iterations is

completed.

Lack of formal identifiability of a and dis, and b and gis, is handled

by replacing a with aþ
P

di/n and recentering so that
P

di¼ 0 (i.e., di

 di –
P

di/n).26 Parameters
P

gi and b are handled in the same way.

Models were run for 100,000 iterations, with burn in period of 12,000,

and a thinning factor of 40. Parameter a was initialized at 23, the mean

sensitivity of all eyes over all time points. Trend b was initialized at

zero. SDs rd and rg were initialized at 5 and 1, respectively, based on

FIGURE 1. Visual field regions mapped to the optic disc.16
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our experience with the variability of the VF measurements. Parameter

g is initialized at 0, di at yi at time point 0. Convergence was assessed

using the Geweke diagnostic.27 The deviance information criteria

(DIC) was calculated and used to test the goodness of fit of our

models.25 Like other information criteria it penalizes models, which

provide a poor fit and/or are overly complex with superfluous

parameters. For each eye, significant progression was defined as a

one sided Bayesian P value of less than or equal to 0.05 for the overall

eye trend, b. We term our method SPROG, for Spatial PROGression,

and, henceforth, refer to our model by this name.

PLR Methods

The linear modeling (lm) function in R24 was used to run point-wise

linear regression for each of the 52 nonblind points on the 24-2 field.

No outliers were removed. Progression was evaluated at the final time

point based on the values of the slope and their significance (P values).

Progression was judged using several criteria as defined as in Table 1.

Our results may differ slightly from Fitzke et al., Viswanathan et al., and

Birch et al.28–30 as PLR was used instead of the PROGRESSOR software.

PLR was then carried out within a Bayesian framework in order to

calculate the DIC to test model fit and provide a direct comparison to

our new method.

Clinical Judgment of Progression

In order to compare our model with a clinical reference, VFs were

evaluated by two independent clinicians using only the VF information.

A third clinician evaluated any discrepancies. The expert clinicians

were given access to the overview print format of the Humphrey 24-2

fields and Glaucoma Progression Analysis printout and asked to make a

judgment as to whether the field was definitely progressing or not.32

No specific guidelines or criteria were given to the clinician.

RESULTS

Of the 194 models run, 192 converged within the 100,000
iterations. Acceptance rates for all parameters sampled through
MH random walk were close to 50%. The mean DIC for our
spatial models was 1719 (range, 310–5940). This is lower than
that of the PLR models (2047; range, 583–6421), indicating our
model better represents the observed data. Observing the DIC
results for models for individual eyes, our method SPROG was
preferred to PLR in 97% of cases.

Our model showed 42% of the eyes progressing, with
statistically significant global slopes (b), at an average rate of
�0.78 (range,�1.76 to�0.27) dB per year. Figure 2 shows the
fit of our model by sector, for an individual eye compared with
the observed thresholds. The local slopes (b þ gi) for an
individual can be observed here through the predicted line. We

can see that the model reduced the effect of overall variation in
the eyes by allowing the predicted points to be influenced by
their neighboring points. This also means the result is not
overly affected by the occurrence of outliers. However, the
model is still flexible enough to allow a certain point within a
sector to differ if the mean of a certain point in the eye is
consistently lower (Fig. 2, temporal sector). The spatial nature
of the VF can be seen in Figure 3, where the local slopes (bþ
gi) are presented by sector. This eye is progressing at an
average rate of �1.48 dB per year. As expected, neighboring
points are more similar than points farther apart.

Table 1 summarizes a selection of PLR criteria used to
evaluate VF progression. Figure 4 shows the ranking of the PLR
methods summarized in Table 1 and our method, SPROG. The
methods ranged from predicting 0% to 75% progression. The
mean progression for the methods tested was 30%. Our
method sits above the mean and ranks eighth out of 12 in
terms of the number of eyes it predicts as progressing. Our
SPROG method was one of the two closest matches to the
clinical reference in terms of overall progression rates, and was
by far the closest amongst the methods that did not
underdiagnose in comparison to clinical reference. Our model
outperforms the other models in that it gives reasonable
predictions of both specificity and sensitivity (Table 2). We also
investigated using a P value of 0.1, and including a slope
criteria for our model. We chose the value of�0.5 dB per year
as generally any loss less than this is considered clinically

TABLE 1. Summary of PLR Methods Progression Criteria

Method Progression Criteria

P1 P � 0.001 for ‡1 point31

P2 P � 0.001 for ‡2 points31

P3 P � 0.001 for ‡3 points31

P4 P � 0.001 for ‡4 points31

V1 P � 0.01 and slope � �1 dB per year for ‡2 points over 3 consecutive tests9

V2 P � 0.01 and slope � �1 dB per year for ‡3 points over 3 consecutive tests9

F1 P � 0.1 and slope � �1 dB for inner points, ��2 dB for points beyond 158 for ‡2 points28

F2 P � 0.1 and slope � �1 dB for inner points, ��2 dB for points beyond 158 for ‡3 points28

VS P � 0.05 and slope � �1 dB per year for ‡1 nonedge* point, ��2 dB for edge points, for ‡1 point29

B1 P � 0.05 and slope � �1 dB per year for ‡2 nonedge* points30

P is the P value associated with the slope and points refers to each tested point (i) on the VF.
* Edge points defined for a 30-2 so this refers to only two points on the 24-2 field.

TABLE 2. Sensitivity and Specificity of Our Method Compared with
PLR Methods against the Clinical Reference

Method Sensitivity Specificity

P4 0.00 0.74

P3 0.04 0.99

P2 0.06 0.99

V2 0.12 1.00

P1 0.18 0.89

V1 0.18 0.99

SPROG (P ¼ 0.05) 0.64 0.66

SPROG (P ¼ 0.1, slope < �0.5) 0.68 0.73

B1 0.74 0.48

SPROG (P ¼ 0.1) 0.76 0.55

F2 0.78 0.49

F1 0.86 0.36

VS 0.88 0.29

Methods are as described in Table 1 and the Clinical Judgment of
Progression subsection in the Methods section. For the SPROG model,
we have also looked at the effect of changing the P value, as well as
introducing a limit on the slope.
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significant progression. With the changed criteria SPROG still

performed best.

Receiver operating characteristic (ROC) curves are shown

for SPROG and P1 to P4 (Fig. 5). These are obtained by varying

the P value thresholds from the standard 0.05 or 0.001. We

have not included ROC curves for methods with requirements

on the numerical value of the slopes because these are not

directly comparable. In particular, when the specificity is zero

we will obtain a sensitivity of less than one because the slope

conditions will not always be attained. The area under the

curve (AUC) values, for the same methods, are presented in the

caption of Figure 5. SPROG shows the largest AUC, showing

that this method has the best overall ROC properties.

DISCUSSION

Our model provides a statistical method to model VF
progression, which takes account of spatial correlation within
VFs, while respecting the relationship between the spatial
arrangement of the field with the anatomy of the eye. It also
provides a method, which is robust to outliers, due to the
pooling of strength within and between proximate sectors, and
can overcome the large amounts of variation in a VF dataset.
Figure 6 illustrates this principle, by presenting the local slopes
across the VF map. In (a) the spatial correlation smooths the
VF, showing progression in all sectors of the VF. In (b) the PLR
method shows erratic estimates of the slopes, which do not
support the fact that if one point is progressing, points nearby
are more likely to be progressing.33 These maps can be

FIGURE 2. Observed versus predicted sensitivities of the 52 analyzed points by sector of the visual field. Observed and predicted lines are color
matched for each locus within each sector. Solid lines depict observed data and dashed lines represent fitted values from the SPROG model.
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compared with the observed data seen in Figure 2. SPROG
shows a global progression rate (b) of�1.48 dB per year with
local slopes ranging from �1.15 to �1.75. PLR produces a
reasonably comparable estimate of the average progression
rate (taken as the median of 52 local slopes, so as to control for
extreme values) at�2.13, but gives much greater local variation
(range, �7.87 to 4.77). One consequence of the erratic
behavior of the PLR method is that it indicates very significant
vision improvement in some regions of the eye (where the
slopes are positive), an implausible finding that is not seen
when using the SPROG methodology.

This model has the potential to provide more reliable
results with higher specificity and sensitivity than existing
methods. By borrowing information from surrounding regions,
our model is able to smooth the occurrence of spikes in the
data, while PLR methods struggle with the occurrence of
spikes in a dataset. In contrast the PLR methods are highly
influenced by outliers and identified eyes as improving that
SPROG showed to be stable. Methods P1 to P4 and F1 to F2
even identified an eye as improving, which our method
classified these eyes as progressing. Criteria that require three
consecutive fields to be significant before classifying progres-
sion underestimate true progression. This was noted in our
dataset for eyes, which were classified as progressing for two

consecutive points, stable at the next time point and then
progressing for the following two time points. Because
significant progression was not seen at the middle time point,
most likely due to an outlier, this eye was not classified as
progressing. For the eye seen in the figures, both the clinician
and SPROG identified this eye as progressing, while only 50%
of the PLR criteria classified this eye as progressing.

Currently, our method uses a subset of our dataset to
estimate measurement error and calculates the retest variation
within each test. Ideally, we would like to estimate measure-
ment error from an independent dataset consisting of pairs of
repeated tests carried on two consecutive days (so that any
change would not be true change, and participant fatigue
would not be an issue). However, because the information
from the subset only contributes to the model through the
specification of a prior distribution, we expect any refinements
to measurement error parameters to have only a modest effect
on the final results produced by SPROG.

Previous spatial modeling has focused on preprocessing the
data by applying a spatial filter, where a weighted average is
calculated based on the surrounding points.11–13 PLR was then
used for classification of the eye. These methods can be
regarded as an approximation to the statistically more
principled SPROG method, since all in affect involve averaging

FIGURE 3. Heat map of local slope parameters (bþ gi) by sector for a single progressing eye. Slopes show rates of sensitivity change in decibels per
year. Black lines separate the sectors and loci nearest the blind spot are shaded gray.
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over local neighborhoods. However, our model has the
additional advantage that these averages are calculated in
conjunction with the other model terms (Equation 3) including
measurement error, a temporal trend, and a spatial temporal
trend. While previous spatial methods are able to account for
spatial correlation and, thus, minimize measurement error,
their benefits are still confined by the use of PLR for
progression classification.

We suggest that our result is more accurate than PLR
methods, which simply fit separate linear regressions of
measured values (yik) over time for each location (i). PLR
methods require subjective cutoffs, which differ greatly in
terms of what significance level is being used, the number of
points that must be seen progressing at each test, and for the
number of consecutive tests these points must be identified as
progressing. This is largely due to the problem of multiple
testing, 52 tests for each eye, and leads to either high false
positive rates or low detection of true progression. A solution
to multiple testing is to use the Bonferroni correction, which
maintains that in multiple test scenarios an adjustment to the

significance level should be made so that the null hypothesis
has the same chance of being rejected, whether testing an
individual case or over multiple cases.34 This is done by
dividing the significance level (Table 1) by the number of
hypotheses being tested (n ¼ 52). Without the correction,
when significance is evaluated at the 5% level over 52 points,
we would expect two to three points to show significant
progression by chance; at 10%, we would expect approxi-
mately five points to be significant by chance.

We can compare our model with additional methods using a
recent network meta-analysis.7 While this does give an idea of
high- and low-ranking methods, it does not solve the problem
of a lack of a gold standard.7 Other methods have to juggle
between high sensitivity and high specificity by adjusting the
various cutoffs. We propose our method reduces both false
positives and false negatives by its novel approach to account
for spatial correlation, thus, reducing the effects of high
variation, which are largely responsible for false predictions.
When comparing our model with the clinical reference, we see
that our model is the closest of the conservative methods, as

FIGURE 4. A ranking comparing PLR methods and our Bayesian CAR approach to determine Visual Field Progression. Refer to Table 1 for a
description of methods. Clinician refers to the method described in the Clinical Judgment of Progression subsection in the Methods section and
SPROG is our Spatial Progression model.
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FIGURE 5. ROC curves comparing PLR methods with SPROG. AUC values for methods are as follows: P1¼ 0.64, P2¼ 0.67, P3¼ 0.64, P4¼ 0.67,
SPROG ¼ 0.69.

FIGURE 6. Heat maps showing local slope parameters for a single subject over the 52 evaluated points of the visual field. Slopes show rates of
sensitivity change in decibels per year. Black lines separate the sectors and loci nearest the blind spot are shaded gray. (a) Highlights the smoothed
results of the SPROG method, while (b) shows the variation of modeling points individually by the PLR method.
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well as having the best overall ROC properties. We argue that it
is better to slightly overestimate progression than underesti-
mate it, as doing so could lead to a delay in treatment and
potential visual loss in a patient.

In addition to providing an overall estimate of whether the
eye is progressing, our method also estimates the rate at which
the eye is progressing. This provides the clinician with more
information and can assist when deciding how aggressively to
treat the glaucoma. Furthermore, our model can provide
estimated rates of progression for individual loci as well as sub
regions of the eye, such as the sectors in Figure 1 or by
hemifield. Another advantage of our method is that only two
VFs are required to run the model. However, it should be
noted that with data from less time points there is
considerable uncertainty around parameter values, and the
ability to identify marginal cases of progression is reduced.
PLR methods require a minimum of three VFs for the model,
and many criteria require significant results from three
consecutive tests, which means that five VFs must be
completed before an eye can be classified as progressing.
Given that in clinical practice on average 1.7 VFs tests are
taken in a year7 this could lead to a long delay before an eye is
shown to be progressing.

Measurement error is known to be dependent on the
distance from the fixation point in the VF. However, it is also
noted that if a patient is highly variable at one point they are
likely to be highly variable at another point.4 Measurement
error is also known to be heterogeneous between fields
dependent on glaucoma severity. When choosing how to
model the magnitude of measurement error (r�), we looked at
including this principle based on our repeated measurements
data. We investigated the relationship between variance and
distance from fixation, and variance, and mean. We found the
power of the models to be low, therefore, in keeping to the
principle of parsimony, we chose a constant value for
measurement error. However, we acknowledge that this is an
approach that may benefit from further research.

Another refinement to consider would be how the spatial
correlation is modeled. The CAR model uses an adjacency
matrix to define spatial correlation. This method of modeling
spatial correlation was found to perform better and allow more
flexibility than the alternative of accounting for spatial
correlation by distance using parametric functions.35 However,
the method of modeling spatial correlation is particularly
important when considering defects that straddle the sector
boundaries defined by Garway-Heath et al.16 While the CAR
model allows for correlation between the sectors, we have
placed less weight on correlations between sectors than
within. The weighting 0.3 for between sectors was chosen as
it gave the best combination of sensitivity and specificity over
all the eyes. For eyes with defects straddling the sectors it may
be of benefit to use a more even weighting scheme.
Investigating modeling spatial correlation via a distance based
method may prove worthwhile.

We propose, following further testing including evaluat-
ing time to progression, that our method could be a valuable
tool for integration into the clinical environment. Our
method minimizes noise with a better combination of
sensitivity and specificity. The heat maps present the slopes
graphically for each location in a manner that makes sense
to the clinician.
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