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PURPOSE. Necrotizing viral retinitis is a serious eye infection that requires immediate
treatment to prevent permanent vision loss. Uncertain clinical suspicion can result in
delayed diagnosis, inappropriate administration of corticosteroids, or repeated intraoc-
ular sampling. To quickly and accurately distinguish between viral and noninfectious
retinitis, we aimed to develop deep learning (DL) models solely using noninvasive blood
test data.

METHODS. This cross-sectional study trained DL models using common blood and serol-
ogy test data from 3080 patients (noninfectious uveitis of the posterior segment [NIU-
PS] = 2858, acute retinal necrosis [ARN] = 66, cytomegalovirus [CMV], retinitis = 156).
Following the development of separate base DL models for ARN and CMV retinitis, multi-
task learning (MTL) was employed to enable simultaneous discrimination. Advanced
MTL models incorporating adversarial training were used to enhance DL feature extrac-
tion from the small, imbalanced data. We evaluated model performance, disease-specific
important features, and the causal relationship between DL features and detection results.

RESULTS. The presented models all achieved excellent detection performances, with the
adversarial MTL model achieving the highest receiver operating characteristic curves
(0.932 for ARN and 0.982 for CMV retinitis). Significant features for ARN detection
included varicella-zoster virus (VZV) immunoglobulin M (IgM), herpes simplex virus
immunoglobulin G, and neutrophil count, while for CMV retinitis, they encompassed VZV
IgM, CMV IgM, and lymphocyte count. The adversarial MTL model exhibited substantial
changes in detection outcomes when the key features were contaminated, indicating
stronger causality between DL features and detection results.

CONCLUSIONS. The adversarial MTL model, using blood test data, may serve as a reliable
adjunct for the expedited diagnosis of ARN, CMV retinitis, and NIU-PS simultaneously in
real clinical settings.

Keywords: necrotizing viral retinitis, acute retinal necrosis, cytomegalovirus retinitis,
common blood test, viral serology, deep learning, multitask learning, adversarial training

V iral retinitis is a rare ocular infection caused by the
Herpesviridae family.1 The disease spectrum is deter-

mined by host immunity and causative virus. Acute retinal
necrosis (ARN) is predominantly caused by the varicella-
zoster virus (VZV) following the herpes simplex virus
(HSV), and immunocompetence is a common feature.2 At
the same time, cytomegalovirus (CMV) retinitis is associ-
ated with immunocompromise.3 Both types of necrotiz-
ing viral retinitis share clinical features with full-thickness
necrotizing due to occlusive vasculitis with varying degrees
of panuveitis. Early diagnosis and appropriate antiviral
treatment can produce a relatively good visual progno-
sis.4 However, delayed diagnosis might lead to severe

complications. In patients with ARN, retinal detachment
occurs in 70% of cases, and up to 50% have severe
visual impairment <20/200.5 One-third of patients with
CMV retinitis have vision loss due to severe macular
complications.6,7

ARN8 and CMV retinitis9 are clinically diagnosed through
a physical examination using a slit lamp and indirect
ophthalmoscopy, supported by fundus photography, opti-
cal coherence tomography, and fluorescein angiography (left
column, Fig. 1). Early diagnosis of necrotizing viral retinitis
is difficult because ocular manifestations may overlap with
noninfectious uveitis of the posterior segment (NIU-PS).10

Differential diagnosis can become even more challenging
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FIGURE 1. A schematic comparison between the conventional process for diagnosing necrotizing viral retinitis and a proposed artificial
intelligence (AI) framework based on blood tests. We hypothesized that necrotizing viral retinitis could be detected early through a cost-
effective AI framework, without detailed ophthalmologic examination or invasive PCR testing. A/C, anterior chamber; HSV-1, HSV type 1;
HSV-2, HSV type 2; ICG, indocyanine green; OCT, optical coherence tomography.

as the disease progresses if atypical fundus findings are
observed or significant vitreous inflammation obscures the
fundus.11 Differentiating between these conditions is crucial
as the treatment for necrotizing viral retinitis requires antivi-
ral drugs, while the treatment for NIU-PS generally involves
immunosuppressants. Administering corticosteroids before
specific antiviral coverage can accelerate the progression of
retinal necrosis and increase the risk of permanent vision
loss.

Polymerase chain reaction (PCR) analysis has enhanced
diagnostic accuracy by detecting viral DNA in intraocu-
lar fluids (left column, Fig. 1).12 However, in primary clin-
ics, both obtaining specimens and performing PCR tests
can be difficult. Anterior chamber paracentesis for aque-
ous humor sampling is invasive13 and usually only tests one
viral etiology at a time.14 Vitreous specimens can be exam-
ined for multiple etiologies, but vitrectomy surgery is often
required.15 On the other hand, common blood and serology
tests are easy to perform and require less advanced equip-
ment, but their value in detecting necrotizing viral retinitis
has been limited. While white blood cell (WBC) counts can
infer a patient’s immune status, nonspecific inflammation
markers and viral serology provide little diagnostic infor-

mation. Nevertheless, because common blood and serology
tests are more accessible than intraocular fluids, inspired
by clinlabomics,16 which address the clinical application of
easily accessible data, we presume that developing meth-
ods to differentiate necrotizing viral retinitis based on them
could help streamline clinical decision-making, avoid diag-
nostic delays, and discover their underexplored diagnostic
values in ophthalmology.

Recently, deep learning (DL) techniques have garnered
attention in the field of ophthalmology. For instance, deep
neural networks (DNNs) with multiple layers have been
implemented in many studies to automatically extract rele-
vant features from fundus images for the detection of various
retinal diseases without requiring manual feature engineer-
ing.17–19 Multitask learning (MTL) is used to resolve the lack
of training data by sharing features across multiple target
tasks,20–23 and adversarial training is also used to address the
limited availability of data as well as the interpretability and
reliability of detection models.24 Although there has been
recent success using MTL to improve DL feature extraction
in common retinal diseases,24,25 few DL-based approaches
have been applied to differentiate rare retinal diseases such
as viral retinitis. This could partially be due to the limited
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size of data and the imbalance of normal versus disease data
sets.

Motivated by this, we present several detection models
that can accurately differentiate necrotizing viral retinitis
and NIU-PS using common blood and serology test data via
different DL techniques. Our models range from base multi-
layer perceptron (MLP)–based models that target ARN and
CMV retinitis separately to various MTL models that may be
able to simultaneously discriminate the three target diseases
in situations where the availability of data is limited. After
developing the models, we conducted a three-step evalua-
tion process. First, we assessed the detection performance of
the models. Second, we explored model interpretability by
analyzing the significant input features for detecting ARN
and CMV retinitis. Last, we evaluated the reliability of the
models by quantifying their ability to reflect the causal rela-
tionship between predictions and input features. Our ulti-
mate goal was to verify the accuracy and reliability of the
most advanced MTL model, which used adversarial training
(right column, Fig. 1), for simultaneously screening the three
diseases using only blood test data.

METHODS

Data Set and Participants

This retrospective, cross-sectional study was conducted
based on patient medical records from two tertiary refer-
ral hospitals in South Korea (Severance Eye Hospital and
Yongin Severance Hospital) between November 2006 and
December 2022. This study was conducted under the
Declaration of Helsinki, and the institutional review board
approved the protocol of Yonsei University Medical Center
(approval number: 2022-1128-001). The requirement for
informed consent was waived as the data retrospectively
used in this study were anonymized beforehand.

We extracted the electronic medical data of patients who
were diagnosed with noninfectious posterior uveitis, ARN,
or CMV retinitis. ARN was clinically diagnosed based on the
criteria published by the American Uveitis Society26 with the
identification of the pathogen virus such as VZV and HSV.
The diagnosis of CMV retinitis is based on clinical features,
evidence of immune compromise, and the detection of DNA
of CMV using real-time PCR analysis.27 NIU-PS was diag-
nosed when the results of multiple clinical examinations and
laboratory tests did not meet the aforementioned criteria for
necrotizing viral retinitis.

Data regarding the demographic characteristics (age
and sex) and the results of laboratory examination of
blood were collected on a patient’s first visit. Hemato-
logic examinations collected included WBC counts and
differential, C-reactive protein (CRP), erythrocyte sedimen-
tation rate (ESR), and viral antibody test. The CRP level
was measured by immunoturbidimetry using Cobas 8000
(Roche, Mannheim, Germany). For WBC measurements, an
automated cell counter (ADVIA 2120 Hematology System;
Siemens, Eschborn, Germany) was used. Quantitative and
qualitative determination of specific immunoglobulin G
(IgG) and immunoglobulin M (IgM) antibodies to the
pathogenic virus was performed based on immunoassay
methods, such as chemiluminescence immunoassay (CLIA)
and enzyme-linked fluorescent assay (ELFA). Antibodies
against VZV, HSV type 1, and HSV type 2 were detected
using the LIAISON XL Analyzer (DiaSorin S.p.A., Saluggia,
Italy) employing the CLIA method. VIDAS (BioMérieux,

Lyon, France) was used as an automated ELFA for the detec-
tion of anti-CMV IgG and IgM antibodies. As input data, anti-
body concentration was used for quantitative tests for input
data, and cutoff index values were used for qualitative tests.
The results of the real-time PCR assay for causative viral
agents of aqueous humor or vitreous specimens were not
included in the data set.

Statistical Analysis

Data statistics of demographic and hematologic data
collected at the time of subject diagnosis before prepro-
cessing can be found in Supplementary Table S1. Contin-
uous variables were presented as mean ± SD, and compar-
isons between groups were performed using one-way anal-
ysis of variance. Categorical variables were presented as
numbers with percentages of the group total, and compar-
isons between groups were analyzed using either Fisher
exact test or the χ2 test. A P value <0.05 was considered
statistically significant. Logistic regression analysis using
the enter method was conducted to assess the associa-
tions between the two target diagnoses and clinical vari-
ables. Additionally, intercorrelation analysis was performed
to examine the correlation between each variable. All statisti-
cal analyses were performed on a patient basis using SciPy,28

NumPy,29 and statsmodels.30

Data Preprocessing

For our research purposes, we performed preprocessing on
the collected data using the following steps: imputation of
missing values, normalization of input data, relabeling, data
split, and oversampling. Additional information regarding
each data preprocessing step can be found in Supplemen-
tary Method S1.

Task Definition

We formulated two classification tasks: ARN detection and
CMV retinitis detection, where the model learns to classify
(1) ARN from CMV retinitis and NIU-PS and (2) CMV retinitis
from ARN and NIU-PS, respectively.

Development of DL Models

With the collected common blood and serology test data
of patients, we developed two models using DNNs for ARN
detection and CMV retinitis detection, respectively. As shown
in Figure 2A, the DNNs are constructed of MLP and have
two parts: an embedding block (EMB) that extracts features
from inputs and a classification block that converts extracted
features into probabilities for its prediction (these models
are denoted as "base DNN models" in this article).

To prepare for the potential unavailability of data in real
clinical settings and to address the limitation of only being
able to test one viral etiology at a time through aqueous
humor sampling,14 we implemented MTL to train models
on two tasks simultaneously. In MTL, features of different
diseases are shared, which allows better model performance
with limited data and the joint detection of ARN and CMV
retinitis. Here, we developed two MTL models with different
feature-sharing schemes: a fully shared MTL model, where
the features of two tasks are completely shared (Fig. 2B),
and a shared-private MTL model, which divides common
and disease-specific features into shared and private feature
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FIGURE 2. Model architectures: (A) base deep neural network model, (B) fully shared MTL, (C) shared-private MTL, and (D) Adversarial
MTL. CLS, classification block.

spaces to tackle situations where a specific marker has a
differently strong association with ARN and CMV retinitis
(Fig. 2C). During training, these two models learn to simulta-
neously predict the ground-truth labels for ARN detection yA
and CMV retinitis detection yC by minimizing the loss func-
tion LTask, which is the weighted sum of the binary cross-
entropy losses LBCE between the predictions ŷA and ŷC and
true distribution yA and yC:

LTask = λ · LBCE

(
ŷA, yA

) + (1 − λ) · LBCE

(
ŷC , yC

)

where λ is the preference weight.
Gaining the trust of medical professionals in DL models

goes beyond accessing their detection performances. As
studied in the preprint by Holzinger and colleagues,31 it
is equally important to ensure that the model’s predictions
align with human intuition. To achieve this, we incorporated
adversarial training into MTL and developed an adversar-
ial MTL model32 (Fig. 2D) in pursuit of a clearer separation
between common and disease-specific features. Our hypoth-
esis is that a more precise separation of features allows
the model to better make predictions based on its inputs,
resulting in a stronger causal relationship between input
features and predictions, which is beneficial for enhancing
the reliability of the model. During training, a discrimina-
tor works adversarially against the shared embedding block
(shared EMB) while using the output of the shared EMB
to predict the corresponding disease of the given patient
data (ARN, CMV retinitis, or NIU-PS). The main idea is that a
properly trained shared EMB should output purer common
features (i.e., not extract disease-specific features), such that
the discriminator cannot use them to predict the disease

correctly. For that, we apply an adversarial loss LAdv to facili-
tate purer common features that suppress the discriminator:

LAdv = min
θS

(max
θD

yD log [Discriminator (hS, θD)])

where Discriminator(·, θD) is the discriminator’s predicted
probability distribution of the three diseases, and yD is the
true distribution. We further apply a differential loss LDi f f ,
described as orthogonality constraints,33 to reduce the simi-
larity between the common and disease-specific feature by
promoting shared and private embedding blocks to extract
nonoverlapped features:

LDi f f = ‖hAᵀhS‖2F + ‖hCᵀhS‖2F

where ‖ · ‖2F is the sum of the squares of all the matrix
entries, also known as the squared Frobenius norm, and
hS, hA, and hC are the output of embedding blocks for
features across diseases, specific to ARN detection and
specific to CMV retinitis detection, respectively. Putting these
all together, the final loss function LAMT L for the adversarial
MTL model is computed as follows:

LAMT L = LTask + τLAdv + γLDiff

where τ and γ are preference weights.
The training process, settings of weights, detailed expla-

nations, and the backbone code of all proposed models are
provided in Supplementary Method S2.
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Experiments

Our experiments are guided by the following three research
questions (RQs). RQ1: How is the performance of our
models in detecting necrotizing viral retinitis? RQ2: How do
we interpret the model’s working mechanism? RQ3: How
reliable is the model prediction?

To evaluate and compare model performance (RQ1) on
ARN and CMV retinitis detection, we applied two evaluation
metrics: (1) the area under the receiver operating character-
istic curve (AUROC) with a random classifier as the baseline
(AUROC = 0.50) and (2) the area under the precision-recall
curve (AUPRC) with the incidence of diseases in our data set
(0.017 for ARN and 0.102 for CMV retinitis) as the baseline.

To analyze model interpretability (RQ2), we first imple-
mented the SHaply Additive exPlanation (SHAP) method34

to investigate the important input features that affect model
predictions in ARN detection and CMV retinitis detection.
SHAP is a mathematical method that explains machine
learning models’ predictions by calculating each feature’s
contribution to the prediction, providing us with interpre-
tations of the model prediction. SHAP has been widely
used in the medical field to understand how a prediction
was reached.35,36 Details on SHAP are provided in Supple-
mentary Appendix S1. After SHAP, we present the two-way
partial dependence plots of the important features from
SHAP to demonstrate how they are correlated with the diag-
nosis.

To evaluate the reliability of the models (RQ3), we
conducted a counterfactual inference test to investigate the
causal relationship between models’ predictions and inputs.
For that, we measured how different the model predictions
are when input features change for the quantification of
model causality, following Ong and colleagues.37 Specifi-
cally, taking an original sample x from the test split, we
added random Gaussian noise to important features identi-
fied via the SHAP analysis to acquire a counterfactual sample
x̄. We then measured the absolute difference between the
predicted probabilities P(x) and P(x̄), when given x and
x̄, respectively. More details on the counterfactual inference
test are provided in Supplementary Appendix S2.

RESULTS

The study excluded 6979 patient cases with missing data
for each variable of interest. A total of 3080 patient cases
are included in this study, which contains 2858 patient
cases diagnosed with NIU-PS, 66 patient cases with ARN,
and 156 patient cases with CMV retinitis. The demograph-
ics and blood test results are summarized in Supplementary
Table S1. The results of intercorrelation analysis for each
clinical variable are provided in Supplementary Figure S1.

Detection Performance (RQ1)

Figure 3A represents evaluation results in terms of ROC
curves and AUROC. We observed that all our models
could detect necrotizing retinitis with high performances
using common blood and serology test data. Especially, the
adversarial MTL model performed best in ARN detection
(AUROC = 0.932; 95% confidence interval [CI], 0.846–1.000).
As for the CMV retinitis detection, the adversarial MTL model
and the fully shared MTL model rank first together with the
same AUROC of 0.982 (95% CI, 0.965–1.000 and 95% CI,
0.965–1.000, respectively). Results for AUPRC are presented

in Figure 3B. Similarly, all models achieved high detection
performances while the adversarial MTL model ranks first
on both tasks, with AUPRCs of 0.253 for ARN detection and
0.807 for CMV retinitis detection. Additionally, we devel-
oped a classic logistic regression model for both diagnos-
tic tasks using the same set of clinical variables, and the
detailed results are presented in Supplementary Table S2.
In both tasks, the logistic regression model demonstrated
comparable AUROC values to the base DNN model (P value
by DeLong’s test = 0.808 for ARN detection, 0.532 for CMV
retinitis detection).

Model Interpretability (RQ2)

We analyzed model interpretability by investigating impor-
tant input features that drive the model prediction. We chose
the adversarial MTL and fully shared MTL model for the
analysis as they have achieved the highest performance in
both or either of the tasks. The SHAP results of the adver-
sarial MTL are presented in Figures 4A and 4B (for fully
shared MTL, see Supplementary Figure S2). Details on SHAP,
including how to read the results, are in Supplementary
Appendix S1.

In ARN detection, for adversarial MTL, the top six impor-
tant features are VZV IgM (17%), HSV IgG (14%), Neutrophil
count(#) (11%), WBC(#) (9%), ESR (9%), and Monocyte(#)
(9%). These six features account for 69% of the model predic-
tion regarding feature importance. The proportional corre-
lation group for ARN detection includes VZV IgM, HSV
IgG, Neutrophil(#), WBC(#), CMV IgG, VZV IgG, CMV IgM,
and HSV IgM. The inversely proportional correlation group
has ESR, Monocyte(#), CRP, Lymphocyte differential(%), and
Monocyte(%). The above features are listed in the order of
feature importance.

In CMV retinitis detection, the top six important features
with regard to CMV retinitis detection are VZV IgM (17%),
CMV IgM (13%), Lymphocyte(#) (10%), Lymphocyte differ-
ential(%) (13%), CRP (9%), and Monocyte(#) (8%), summing
up to 70% of the feature importance. The proportional
correlation group for CMV retinitis detection contains
CMV IgM, Lymphocyte differential(%), CRP, Monocyte(#),
Neutrophil(%), ESR, CMV IgG, VZV IgG, and Monocyte(%).
The inversely proportional correlation group has VZV IgM,
Lymphocyte(#), Neutrophil(#), and HSV IgG. The above
features for CMV retinitis detection are also listed in the
order of feature importance. Figures 4C and 4D present
the two-way partial dependence plot of the top two impor-
tant features (by SHAP) for adversarial MTL in ARN and
CMV retinitis detection, respectively, using our test split. The
results align with the SHAP results. In the context of ARN
detection, lower values of VZV IgM and HSV IgG corre-
spond to a decreased probability of ARN, as predicted by
the model. In the case of CMV retinitis detection, a higher
VZV IgM value and lower CMV IgM values are associated
with a reduced probability of CMV retinitis.

Model Reliability (RQ3)

We present the results of the counterfactual inference test
in Figure 5. We conducted the test on the adversarial MTL
and fully shared MTL models as they achieved the highest
performance in both or either of the detection tasks. We
applied random Gaussian noise to the values of important
features identified by SHAP to obtain counterfactual samples
for each detection task. For ARN detection, we modified the
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FIGURE 3. Performance evaluation: (A) AUROC comparison of MTL models against the base DNN model on both ARN detection and CMV
retinitis detection. (B) AUPRC of base DNN and MTL models for ARN and CMV retinitis detection presenting against disease prevalence.

VZV IgM and HSV IgG values, and for CMV retinitis detec-
tion, we modified the CMV IgM values.

In the bin charts, the first bin indicates the number of the
original-counterfactual sample pairs yielding similar diag-

noses where the differences between predicted probabilities
are less than 2.5%. The lower the first bin is (i.e., fewer pairs
with small DIF), the better the model reflects the changes of
input features in its prediction.We observed that when given
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FIGURE 4. The SHAP results (A, B) and two-way partial dependence plots (C, D) of the adversarial multitask learning model: the SHAP
results are presented by the beeswarm plots and the pie charts. In the beeswarm plot, the x-axis refers to each feature’s impact on model
prediction according to its SHAP value, whose absolute value quantifies "how much" the impact is, and the positive/negative value indicates
that the feature increases/decreases the predicted probability for the target disease. The color of each dot represents the magnitude of the
value of the corresponding input feature, from red (high) to blue (low). The pie chart visualizes the ranking of feature importance with
regard to the model prediction. It is derived from the SHAP values presented in the beeswarm plot. (A) The SHAP result for ARN detection.
(B) The SHAP result for CMV retinitis detection. (C) The two-way partial dependence plot for ARN detection using the top two important
features obtained with SHAP. (D) The two-way partial dependence plot for CMV retinitis detection using the top two important features
obtained with SHAP.

FIGURE 5. Comparison of counterfactual inference test results for the fully shared and adversarial MTL models on two tasks.

original-counterfactual sample pairs, the adversarial MTL
model had a lower count of instances yielding similar predic-
tions (the first bins: 0 ≤ DIF < 0.025) compared to the fully
shared MTL model in both ARN detection (42.3% decrease)

and CMV retinitis detection (19.0% decrease). These results
quantified how the adversarial MTL model demonstrated
a stronger causal relationship between input features and
model predictions than the fully shared MTL model.

Downloaded from iovs.arvojournals.org on 04/25/2024



Joint Detection of Viral Retinitis From Blood IOVS | February 2024 | Vol. 65 | No. 2 | Article 5 | 8

DISCUSSION

In this multicenter cross-sectional study, we empirically
showed that we could use common blood and serology test
data to develop diverse models that accurately differentiate
necrotizing viral retinitis from NIU-PS. Of those models, the
adversarial MTL model can simultaneously detect ARN and
CMV retinitis with the best performance in both tasks in all
metrics. Our hematology-based approach is novel, as our
models achieved high performances in differentiating viral
retinitis without conventional diagnostic procedures such as
fundus examination and PCR analysis. This makes screen-
ing safer and more accessible in primary care settings while
reducing required time, cost, and equipment. By minimizing
diagnostic delay, we expect our approach to improve patient
outcomes.

The base DNN models could accurately detect one of
two rare diseases (ARN or CMV retinitis) from the other and
NIU-PS. This indicates that the base DNN models were able
to extract valuable diagnostic values for diagnosing these
diseases from the blood test data. However, the amount
of the collected data was small for joint detection of three
diseases at the same time, and DL-based detection models
tend to yield suboptimal performances or overfitting in such
situations.38 To address these issues, we employed MTL to
train the models on two diagnosis tasks to learn shared
features across diseases. Such information sharing encour-
ages the model to learn representations that are general-
izable to all target tasks, rather than memorizing task- or
class-specific noises and overfitting to individual tasks. Addi-
tionally, we introduce adversarial training into the shared-
private MTL model (i.e., the adversarial MTL model) to
enhance the separation of common and disease-specific
features, resulting in further performance gains.

A common remedy to overfitting when developing diag-
nosis models is transfer learning, which involves pretrain-
ing a model with available large data and then fine-tuning
it with small data of target diseases. For instance, Zhou
et al.39 recently proposed RETFound, a foundation model
pretrained with large-scale (1.6 million) retinal images,
which can be used to develop models for diagnosing eye
diseases by further fine-tuning with small patient data.
However, in the absence of large-scale data or tasks for
pretraining, our adversarial MTL has proved to be an effi-
cient method to overcome the limitations posed by small
data sets. If a pretrained foundation model appropriate for
our tasks becomes available, it would be valuable to inves-
tigate the performance improvement achieved by transfer
learning with adversarial MTL for fine-tuning.

The unknown diagnostic value of hematology data can
be inferred from findings on the important features of each
diagnostic task. Antiviral IgG and IgM, the conventional
markers of immunity and recent infection,40 did not help
diagnose necrotizing viral retinitis much. Although reduced
cellular immunity is a well-known risk factor for ocular viral
infections,41 WBC differential has not been used explicitly
to diagnose necrotizing viral retinitis. In the order of impor-
tance, the adversarial MTL model found VZV IgM, HSV IgG,
Neutrophil(#), and WBC(#) to be important for a positive
diagnosis of ARN; ESR and Monocyte(#) are significant for
a negative diagnosis of ARN; CMV IgM, Lymphocyte(%),
CRP, and Monocyte(#) are important for a positive diag-
nosis of CMV retinitis; and VZV IgM and Lymphocyte(#)
are significant for a negative diagnosis of CMV retinitis.
Although no pronounced correlation was found between

antiviral antibody concentrations and cutoff index values in
each virus pathogen, it is noteworthy that cutoff index values
were informative in determining necrotizing viral retinitis.
Furthermore, these findings highlight MTL’s superiority in
developing diagnostic models compared to existing tree-
based algorithms. The latter often necessitate manual feature
selection, involving processes such as feature engineering.
These procedures are time-consuming and heavily reliant
on prior knowledge of each feature’s diagnostic value.

The counterfactual inference test allowed us to quantify
the causality between important input features and model
predictions. The results showed that the adversarial MTL
model had fewer original-counterfactual sample pairs yield-
ing similar predictions when important input features were
altered, demonstrating that the adversarial MTL model better
reflects the causal relationship between inputs and predic-
tions than fully shared MTL. Such model causality matches
the human thinking process: "Changes in important features
lead to a different diagnosis." As elaborated in the preprint
by Holzinger and colleagues,31 this property is essential for
enhancing medical professionals’ trust in DL models. We
hence could confirm the reliability of our adversarial MTL
model.

This study has limitations. First, our models do not
address other retinal infections caused by viruses (e.g.,
Epstein–Barr virus retinitis) and other pathogens (e.g., tuber-
culosis). However, they can distinguish the two most sight-
threatening infectious retinitis (either separately or simulta-
neously) from noninfectious uveitis. Second, while our MTL
diagnostic model has shown promise in achieving high accu-
racy and reliability using our institutional data, the general
applicability of the model in clinical practice has not been
confirmed. Qualitative serology test results may have vary-
ing cutoff index values due to different testing equipment
and reagents. To adapt our model to various clinical settings,
appropriate calibration of the cutoff values may be required
through further multi-institutional research. Once validated,
our MTL model can be offered through a user interface for
clinical use. Although public data for validation were absent
for our diagnostic task, the prospective accumulation of real
clinical data through an open user interface holds the poten-
tial for robust external validation. Fine-tuning model param-
eters may be necessary for consistent performance when
applied to calibrated data from other institutions. Last, as
fundus photographs were not incorporated into our model,
we could not verify the impact of it on model performance.
We acknowledge the potential for improved accuracy with
fundus photographs but also recognize the challenges posed
by cases with nonspecific or obscured fundus findings and
the modeling of multimodal input features (numeric blood
and serology test results and images). Future research could
explore the integration of fundus findings into our models
and the associated implications for diagnostic performance.

In conclusion, this study manifests the previously unex-
plored diagnostic values of common blood and serology test
data in the differential diagnosis of necrotizing viral retinitis.
We presented and compared diverse ways to develop detec-
tion models with such data. Of those models, the adversarial
MTL model showed the best performance in simultaneously
detecting ARN and CMV retinitis as well as demonstrated its
reliability. We presume clinicians can implement our adver-
sarial MTL model to achieve a faster diagnosis, appropri-
ate treatment, and improved visual outcomes. It can offer
standardized and advanced medical services for areas with
limited access to tertiary medical care. We also expect our
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framework can be applied to other medical fields for the
screening of rare diseases and the discovery of previously
unknown markers.
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