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We present a computational-observer model of the

human spatial contrast-sensitivity function based on the

Image Systems Engineering Toolbox for Biology (ISETBio)

simulation framework. We demonstrate that ISETBio-

derived contrast-sensitivity functions agree well with

ones derived using traditional ideal-observer

approaches, when the mosaic, optics, and inference

engine are matched. Further simulations extend earlier

work by considering more realistic cone mosaics, more

recent measurements of human physiological optics, and

the effect of varying the inference engine used to link

visual representations to psychophysical performance.

Relative to earlier calculations, our simulations show

that the spatial structure of realistic cone mosaics

reduces the upper bounds on performance at low spatial

frequencies, whereas realistic optics derived from

modern wave-front measurements lead to increased

upper bounds at high spatial frequencies. Finally, we

demonstrate that the type of inference engine used has

a substantial effect on the absolute level of predicted

performance. Indeed, the performance gap between an

ideal observer with exact knowledge of the relevant

signals and human observers is greatly reduced when

the inference engine has to learn aspects of the visual

task. ISETBio-derived estimates of stimulus

representations at various stages along the visual

pathway provide a powerful tool for computing the
limits of human performance.

Introduction

Newton’s work on the nature of light, some four
centuries ago, initiated the quantitative understanding
of vision. Since that time much has been learned about
light, retinal image formation, fixational eye move-
ments, and photon-initiated excitations in the cone
photoreceptors (Bowmaker, Dartnall, & Mollon, 1980;
Wyszecki & Stiles, 1982; Rodieck, 1998; Engbert &
Kliegl, 2004; Martinez-Conde, Macknik, & Hubel,
2004; Artal, 2015). Work continues to clarify how
photoreceptor excitations are transformed into photo-
current and then to retinal and cortical signals that
mediate visual perception (Baylor, Nunn, & Schnapf,
1984; Wandell, 1995; Meister & Berry, 1999; Pugh &
Lamb, 2000; Angueyra & Rieke, 2013; Li et al., 2014).

All visual stimuli pass through the optics and retina,
giving these structures a prominent role in defining the
limits of vision. For example, the three-dimensional
nature of human color vision can be understood in
terms of the three types of cone photopigments that
absorb light (Brindley, 1960; Wandell, 1995). Also,
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critical aspects of human pattern sensitivity depend on
physiological optics (Robson, 1966; Campbell &
Robson, 1968; Williams, 1985; Banks, Geisler, &
Bennett, 1987). Quantification of human color and
pattern sensitivity are critical for the imaging industry,
including the design of cameras, displays, and printers;
understanding the biological basis of visual sensitivity
gives us confidence in the generality of the results and
enables the diagnosis and targeted treatment of
blinding disease.

Equally important, many aspects of visual percep-
tion are not explained by the initial stages of visual
encoding. For example, human judgments of material
appearance, the ability to recognize objects, and
stereovision depend on brain circuits that integrate
information across space, time, and the two eyes.
Attempts to understand these circuits can nonetheless
benefit from a quantitative understanding of the initial
encoding, as this determines the information available
for perceptual inferences made by the brain.

Although our understanding of many properties of
visual encoding may in principle be quantified using
explicit computational models, putting such models to
use in the practice of vision science is currently
daunting. The relevant information is spread across a
large literature, and integrating this information for a
particular project typically requires a substantial effort.
We developed the Image Systems Engineering Toolbox
for Biology (ISETBio, http://isetbio.org) to make the
relevant computations and data more accessible.
ISETBio is an open-source software system that
provides an image-computable model of the first stages
of visual encoding.

Image-computable means that the calculations begin
with a quantitative description of the visual image. An
important special case supported by ISETBio is planar
images presented on a computer display or the printed
page. ISETBio also includes support for a more general
case, in which the input is defined using a three-
dimensional description that includes the location and
shape of scene elements as well as the spectral
properties of each scene element. In this more general
case, the retinal image is derived from the scene
representation using ray-tracing methods (Pharr &
Humphreys, 2010).

Computable methods are important because they
can characterize visual representations for conditions
that are beyond the reach of analytic formulations.
When coupled with an inference engine that links the
computed representations to performance on specific
visual tasks, such as an ideal observer (De Vries, 1943;
Rose, 1948; Tanner & Swets, 1954; Geisler, 1984, 1989),
computable methods can assess limits on performance
and characterize the information available to brain
circuits. We use the term computational-observer
analysis to describe image-computable methods com-

bined with an inference engine (Lopez, Loew, Murray,
& Goodenough, 1992).

This article describes extensive updates to the
previous versions of ISETBio (Farrell, Jiang, Winawer,
Brainard, & Wandell, 2014; Jiang et al., 2017). We
review and validate the updates by showing that the
predictions for a computational observer implemented
in ISETBio agree with analytical calculations of ideal-
observer pattern sensitivity derived in prior work
(Geisler, 1984; Banks et al., 1987). We then explore
how individual differences in human optics and cone
mosaic affect predicted human performance. Finally,
we analyze how performance varies with the parame-
ters and architecture of the inference engine. In
particular, we consider inference engines designed for
pattern detection, and compare support-vector-ma-
chine (SVM) methods, in which decision rules are
learned by observing labeled response instances, with
ideal-observer methods, in which the decision rule is
computed analytically based on exact knowledge of the
stimulus and the response noise statistics.

Pattern-sensitivity analysis is but one of many
potential applications of ISETBio. We hope that
making the software open-source and freely available
will help others to develop analyses in new application
areas.

ISETBio overview

ISETBio computations are organized into a series of
extensible methods that model the critical stages of
visual encoding, from the visual scene through the
optics, cone mosaic, and inference engine (Figure 1).
ISETBio scene methods represent the visual scene and
enable calculations based on this representation. Scene
methods include ways to represent visual stimuli
consisting of a spatiotemporal pattern specified as the
spectral radiance emitted at each location and time on a
flat screen. In this case, which is the one we use in this
article, the scene specification can be in terms of RGB
values and is coupled to display calibration data, most
importantly the spectral radiance of each of the display
primaries (Figure 1A). The ability to represent stimuli
presented as images on a flat display is important for
modeling many psychophysical experiments. We have
also implemented methods that support modeling of
psychophysical stimuli presented in Maxwellian view
(Tuten et al., 2018) and modeling of 3-D scenes using
quantitative computer-graphics calculations (Lian et
al., 2018).

The spectral irradiance incident at the retina is
calculated from the scene representation using ISETBio
optical image methods (Figure 1B). This computation
accounts for critical physiological optics factors in-
cluding pupil size, wavelength-dependent blur, and
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wavelength-dependent transmission through the crys-
talline lens. The optical image calculations used in this
article account for the on-axis wave-front aberrations
of the eye’s optics, measured using a wave-front sensor
(Thibos, Hong, Bradley, & Cheng, 2002), which
determine a set of wavelength-dependent, shift-invari-
ant point-spread functions.

The spatial pattern of cone excitations is computed
from the retinal irradiance using ISETBio cone-mosaic
methods. These methods transform the spectral irradi-
ance at the retina into cone excitations (Figure 1C). The
cone-mosaic methods include parameters which control
factors such as the relative number of L-, M-, and S-
cones; the existence and size of an S-cone-free zone in
the central fovea; the cone spacing, inner-segment

aperture size, and outer-segment length; the cone
photopigment density; and the macular pigment
density. These parameters all affect the number of cone
excitations.

In a contrast-sensitivity experiment, the subject
discriminates between a spatially uniform pattern (null
stimulus) and a cosinusoidal grating pattern (test
stimulus). In ISETBio, we use the term inference engine
to describe methods that link the computed visual-
system responses to psychophysical performance.
Inference-engine methods make decisions in a simu-
lated visual task based on the stimulus representation
at different processing stages along the visual pathway.
Figure 2A and 2B depicts the retinal-image contrasts
seen by the L-, M-, and S-cones for, respectively, the

Figure 1. Flowchart of computation in ISETBio. (A) The visual stimulus, in this case an image on an RGB display, is represented as an

ISETBio scene, which represents the emitted radiance at a set of wavelengths. Here, the spectral power distributions of the display

primaries (lower portion of the figure) and the pixel spatial sampling are used to convert stimulus RGB values to the spatial-spectral

radiance. An RGB rendition of the scene is depicted in front of the spectral-radiance stack. In the calculations reported in this article,

wavelengths are sampled between 380 and 780 nm with a 5-nm spacing, but here only a subset of the sample wavelengths is shown.

(B) ISETBio optical image methods transform the scene to the retinal spectral irradiance. These methods blur the scene spatial

radiance using a set of wavelength-dependent, shift-invariant point-spread functions (example for one individual subject shown in the

lower portion of the figure) and account for spectral transmission through the lens. Spectral transmission through the macular

pigment is handled as part of the computation of cone excitations. C. ISETBio cone-mosaic methods compute the number of cone

excitation events, which are coded in grayscale. S-cones appear dark, as they are excited much less than the L- and M-cones because

of selective absorption of short-wavelength light by the ocular media. In the mosaic shown (lower image), cone density decreases and

cone aperture increases with eccentricity, and there is a central region free of S-cones.
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null stimulus and for a 16-c/8 grating test stimulus with
100% Michelson contrast. Note that for this stimulus,
aberrations reduce the retinal-image L- and M-cone
contrast by a factor of 2 relative to the stimulus image,
whereas the retinal S-cone contrast is reduced by a
factor of 10. Aberrations also shift the spatial phase of
the retinal S-cone contrast with respect to those of L-
and M-cone contrasts (Figure 2B).

Figure 2C and 2D depicts the mean excitation level
(within a 5-ms window) of cones along the horizontal
meridian for the null and test stimuli, respectively. The
mean cone excitation increases with eccentricity be-
cause of changes in cone aperture with eccentricity. The
excitations of the same cones to a single stimulus
instance, obtained by adding Poisson noise to the mean
excitations, are depicted in Figure 2E and 2F,
respectively. The mean excitation of the entire cone
mosaic to the null and test stimulus is depicted in
Figure 2G and 2H, respectively, whereas Figure 2I and
2J depicts a single instance of the cone-mosaic
excitation. Note that it would be challenging to
discriminate between the two stimuli by looking at
single response instances of just a few cones, as can be
seen by inspecting Figure 2E and 2F. Spatial integra-

tion across the cone mosaic will improve performance,
as can be appreciated by visual comparison of Figure 2I
and 2J. It must also be noted that the responses in
Figure 2 are excitations to a suprathreshold (100%)
contrast grating, not to a grating at contrast threshold,
and ultimately classification performance cannot ex-
ceed the limits imposed by the Poisson noise inherent in
these excitations.

In this article, we consider inference engines that
model a two-alternative forced-choice version of the
contrast-sensitivity experiment, and we use response
instances at the level of cone-mosaic excitations to
predict the probability of correct discrimination be-
tween gratings and a uniform field. Performance is
limited according to how well the inference engine is
matched to the task (the classifier’s calculation effi-
ciency; Barlow, 1964; Pelli, 1990), as well as the
difference between the representations of the stimuli
relative to those of noise—that is, trial-by-trial
fluctuations in the representations. As already noted,
Poisson noise is inherent to cone excitations and is a
critical limiting factor for performance at this stage of
encoding.

Figure 2. Stimulus representations in ISETBio. Representations of a uniform field (null stimulus) and of a 16-c/8 100% Michelson

contrast cosinusoidal grating (test stimulus) are depicted in paired panels. (A–B) Retinal contrast along the horizontal meridian for the

null and test stimulus, respectively. These spatial contrasts are depicted as seen by the L-cones (red), M-cones (green), and S-cones

(cyan). (C–D) Mean cone excitation (number of photon-absorption events within a 5-ms time bin) for cones along the horizontal

meridian to the null and test stimulus, respectively. Red, green, and blue disks indicate L-, M-, and S-cones, respectively. (E–F) A single

excitation instance of cones along the horizontal meridian to the null and test stimulus, respectively. (G–H) Mean cone excitation

pattern of the entire mosaic to the null and the test stimulus, respectively. (I–J) A single excitation instance of the mosaic to the null

and the test stimulus, respectively.
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Results

Pattern-sensitivity validation

Complex software requires explicit testing of the
individual components (unit testing), component com-
munication (integration testing), and the overall system
(validation). The ISETBio software includes a number
of such tests, as well as methods to check that new
software methods do not invalidate previously estab-
lished tests (regression testing). In this section we
describe validation testing of a complex computation
that utilizes key ISETBio methods. We show that the
ISETBio implementation—including stimulus defini-
tion, physiological optics, and cone excitations—
matches the precise analytical calculation performed by
Banks et al. (1987) for an ideal observer’s contrast
sensitivity to known spatial harmonic patterns (signal-
known-exactly). This test is designed to provide
confidence in the basic implementation and the validity
of the subsequent explorations of how physiological
optics, the cone mosaic, and the inference engine
influence human pattern sensitivity.

We computed ISETBio contrast-sensitivity functions
(CSFs) using parameters that matched those used by
Banks et al. (1987). These included a 2-mm pupil
diameter, a point-spread function (PSF) derived from
early line-spread-function measurements (Campbell &
Gubisch, 1966; Geisler, 1984), a regularly spaced
hexagonal cone mosaic comprising an approximation
of L- and M-cones in a 2:1 ratio, cone center-to-center
spacing of 3 lm, and a cone inner-segment aperture of
3 lm. There was one small difference within the cone
mosaic. Banks et al. calculated for a mosaic in which all
cones were of the same type, each with a luminance
spectral sensitivity of 2LþM; we modeled a mosaic
consisting of distinct L- and M-cones in a 2:1 ratio.

Performance (probability correct, Pcorrect) was esti-
mated for each grating contrast and spatial frequency
separately. We simulated a two-alternative forced-
choice task, using an ideal-observer classifier that
selects which of the two alternative stimulus sequences
(test–null or null–test) was more likely to generate the
observed cone excitations. The test stimulus was a
spatial grating of known contrast, frequency, and
position; the null stimulus was a spatially uniform field.
The simulated duration of the test and null stimulus
was 100 ms on each trial, with the stimuli presented in
random order. The ideal observer’s performance was
calculated analytically given knowledge of the sequence
of mean number of excitations during the 100-ms
intervals and the assumption of Poisson noise. Re-
sponses were binned using 5-ms bins. This choice is
irrelevant in the present simulations, which model static
stimuli in the absence of eye movements, and the results

are indeed the same if a single 100-ms bin is used for
each interval. The choice of 5-ms bins is to allow direct
comparison with future work which will include fixa-
tional eye movements (Cottaris, Rieke, Wandell, &
Brainard, 2018). The psychometric function (Pcorrect as
a function of stimulus contrast) for each spatial pattern
was fitted with a cumulative Weibull (Kingdom &
Prins, 2010; http://www.palamedestoolbox.org), and
threshold was computed as the stimulus contrast
corresponding to Pcorrect ¼ 0.7071. Contrast sensitivity
is the reciprocal of threshold contrast.

Figure 3A compares CSFs for three mean luminance
levels (3.4, 34, and 340 cd/m). The solid lines show the
ideal-observer CSFs obtained by Banks et al. (1987),
digitized from their figure 2. Disks depict the CSFs
computed using ISETBio with its implementation of
the ideal-observer inference engine. The ISETBio-
derived CSF agrees with that of Banks et al. across all
spatial frequencies and luminance levels. In addition,
the sensitivity ratios between the different mean
luminance levels (bottom panel of Figure 3A) cluster
around the ratios

ffiffiffiffiffi
10
p

and
ffiffiffiffiffiffiffiffiffiffi
1=10

p
, as expected from

the square-root law for Poisson-limited sensitivity (De
Vries, 1943; Rose, 1948). We take this agreement as an
important system validation of the ISETBio imple-
mentation.

As a further check, we assessed the impact of pupil
diameter (2 mm vs. 3 mm) on the CSFs computed
using ISETBio (Figure 3B). The 2-mm pupil is used
for the comparison with calculations and psycho-
physical data reported by Banks et al., as their data
were collected using a 2-mm artificial pupil. The 3-mm
pupil is used because it is more appropriate for natural
viewing of the stimuli. When a 30-year old observer
views an adapting field of 508 and 34 cd/m binocularly,
the expected pupil diameter is 3.4 mm; when the
adapting luminance is 100 cd/m, the expected pupil
diameter is 3.0 mm (Watson & Yellott, 2012). For
Poisson signals, sensitivity should increase with the
square root of retinal irradiance, and since retinal
irradiance is proportional to the square of pupil
diameter, we expect the sensitivity ratios for the 3-mm
vs. the 2-mm CSF to be 1.5 across all spatial
frequencies. This is confirmed to a good approxima-
tion, which further validates the software implemen-
tation. Note that for this test we did not change the
optical PSF, although a change would be expected in a
simulation aimed at fully understanding the impact of
a change in pupil size.

Taken together, these computations ground the
ISETBio ideal-observer implementation in the analyt-
ical literature and validate the use of ISETBio for
exploring how changes in visual-system parameters
affect the estimated upper bound for the spatial CSF.
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Cone mosaic

The Banks et al. (1987) psychophysical data were
collected using a constant number of grating cycles
across changes in spatial frequency. Thus the spatial
extent of the stimuli was larger for lower spatial
frequencies. Banks et al. employed a constant-density
cone mosaic. For the human retina, however, cone
density declines as a function of eccentricity; this
decline is particularly rapid across the central fovea
(Curcio, Sloan, Kalina, & Hendrickson, 1990). To
explore how a change in cone density affects the spatial
CSF for constant-cycle stimuli, we developed new
methods to implement realistic cone mosaics (described
in detail later, under Cone mosaics). These cone-mosaic
methods retain the approximately hexagonal cone
packing of central retina while decreasing the cone
density with eccentricity. We compared the ideal-
observer CSF calculations for the regularly-spaced

hexagonal L/M-cone mosaic of Banks et al. to those
obtained using different eccentricity-dependent mosa-
ics. For these calculations, we simulated a mean
stimulus luminance of 34 cd/m2 and a 3-mm pupil. The
optical PSF matched the one used by Banks et al.

Results from this analysis are depicted in Figure 4.
The mosaic employed by Banks et al. is depicted in
Figure 4A. It contained only L- and M-cones in a 2:1
ratio, with hexagonal packing at 3-lm cone spacing
and a 3-lm cone inner-segment diameter. Three
eccentricity-dependent cone mosaics are depicted in
Figure 4B–4D. The mosaic shown in Figure 4B also
consisted of only L- and M-cones in a 2:1 ratio, but
cone density decreased according to the measurements
of Curcio et al. (1990), and the cone inner-segment
diameter was 1.6 lm. A second eccentricity-dependent
cone mosaic consisted of L-, M-, and S-cones in the
ratio 0.62:0.31:0.07, with S-cones starting to appear at
eccentricities .0.18 (Figure 4C). A third eccentricity-

Figure 3. ISETBio validations. A. Validation against Banks et al. (1987). The top plot depicts contrast-sensitivity functions (CSFs) for a 2-

mm pupil diameter and three mean luminance levels. Solid lines depict the ideal-observer CSFs, digitized from Banks et al., and disks

depict the CSF values calculated using ISETBio with matched parameters. The ratios of contrast sensitivities between the 3.4- and 34-

cd/m mean luminances (blue) and between the 340- and 34-cd/m mean luminances (red) are shown in the bottom plot. B. Validation

with respect to pupil size. Top plot depicts the ISETBio ideal-observer CSFs for 3-mm (gray) and 2-mm (red) pupil diameters. Other

parameters matched those of Banks et al., and the optical PSF was held constant across this comparison. The bottom plot shows the

ratio of the 3- and 2-mm contrast sensitivities.
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dependent cone mosaic, depicted in Figure 4D, had, in
addition, eccentricity-dependent changes in the cone
inner-segment diameter and outer-segment length.
Computation details are provided under Eccentricity-
dependent cone-efficiency correction.

Figure 4E shows the effect of these cone-mosaic
properties on the ideal-observer CSF. The CSF plotted
in gray replots the simulation of the Banks et al. (1987)
constant-density mosaic from Figure 3B. The red, blue,
and green plots show the CSFs obtained with the
eccentricity-dependent mosaics. Note that at low

spatial frequencies these deviate systematically from the
CSF of the constant-density mosaic. The size of the
deviation is quantified in the sensitivity-ratio plots in
the bottom panel. The effect of mosaic density is most
pronounced for the two mosaics with constant inner-
segment diameter and outer-segment length. For these
mosaics, the drop in relative sensitivity occurs because
in the constant-cycle paradigm, low-frequency stimuli
extend further into the periphery, where cone density is
lower. This leads to lower total cone excitations in
response to the stimuli compared to the constant-

Figure 4. Effects of cone mosaic. (A–D) Central 0.58 3 0.58 of the mosaics used. (A) The mosaic used by Banks et al. (1987) with a

regular hexagonal cone packing with 3-lm cone spacing, 3-lm cone aperture, and cones with a luminance spectral sensitivity. We

replicated these parameters but used L- and M-cones in a 2:1 ratio. (B) A mosaic with eccentricity-dependent cone density with only

L- and M-cones in a 2:1 ratio. Cones in this mosaic have foveal values for inner-segment diameter and outer-segment length,

independent of eccentricity. (C) A mosaic with eccentricity-dependent cone density, foveal cone inner-segment diameter, and outer-

segment length, consisting of L-, M-, and S-cones. (D) A mosaic with eccentricity-dependent cone density and cone inner-segment

diameter/outer-segment length, also with L-, M-, and S-cones. In the mosaics depicted in (B–D), cones at zero eccentricity are

separated by 2 lm, with a corresponding peak theoretical cone density of 287,675 cones/mm2. This is near the high end of the cone-

density range in human subjects (100,000–324,000 cones/mm2) reported by Curcio et al. (1990). The aperture-to-cone-spacing ratio is

0.79, close to the 0.82 value suggested by Miller and Bernard (1983) and Curcio et al. In (C–D), the L-:M-:S-cone ratio is

0.62:0.31:0.07, with a central region free of S-cones, and S-cone spacing outside of this central region constrained to be relatively

regular. (E) Contrast-sensitivity functions for different mosaics computed for a 3-mm pupil and the point-spread function used by

Banks et al. Gray, red, blue, and green disks depict the contrast-sensitivity functions for the mosaics shown in (A–D). Magenta disks

depict the contrast-sensitivity function computed for a variant of the mosaic shown in (D), in which cone excitations were corrected

for the effect of varying macular pigment density with eccentricity.
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density mosaic, and thus lower ideal-observer sensitiv-
ity. The addition of S-cones has a negligible effect.

The drop in sensitivity for the low spatial frequencies
is mitigated for the mosaic that implements an increase
in cone inner-segment diameter and a decrease in outer-
segment length with increasing eccentricity (Figure
4D). The net effect of the change in these factors is to
increase the number of excitations per cone as
eccentricity increases, partially offsetting the reduction
in total excitations caused by reduction in cone density.
Even for this mosaic, however, there is a notable
decrease in low-spatial-frequency sensitivity compared
to the constant-density-mosaic CSF.

In the four mosaics depicted in Figure 4A–4D, the
macular pigment density does not change with eccen-
tricity. To examine the effect of eccentricity-dependent
changes in macular pigment density, we generated an
even more realistic mosaic, whose properties were
identical to those of the mosaic displayed in Figure 4D
except that computation of cone excitations was
corrected for the effect of macular pigment changes
with eccentricity. This correction is described under
Eccentricity-dependent macular pigment-density cor-
rection. The purple disks in Figure 4E depict the
resulting CSF. As can be seen, incorporating realistic
values for the macular pigment at different eccentric-
ities does not have a significant impact on the
achromatic CSF. This is expected, as the main effect of
the macular pigment is on the excitation rates for S-
cones, which are sparse enough not to play an
important role. For most of the remaining calculations,
we use the eccentricity-dependent mosaic shown in
Figure 4D with the eccentricity-dependent macular
pigment correction.

Optics

There have been significant improvements in the
ability to measure the optical quality of the eye since
early measurements of the human line-spread function
(Westheimer & Campbell, 1962; Campbell & Gubisch,
1966). In particular, wave-front aberration measure-
ments in individual human eyes (Liang & Williams,
1997) enable calculation of the corresponding PSFs
(Thibos, Ye, Zhang, & Bradley, 1992; Goodman, 2005;
Watson, 2015).

We examined how wave-front-aberration-based
PSFs affect the derived CSF and contrasted this to the
CSF derived by Banks et al. (1987). To do so we used
the Thibos et al. (1992) data set, which includes a good
sample of on-axis wave-front aberration measurements.
However, as Thibos et al. (1992) point out, direct
averaging of the PSFs (or of the Zernike polynomial
coefficients) results in a PSF that differs qualitatively
from any of the underlying measurements: The

averaging process removes the idiosyncratic PSF
structure found in most eyes. In addition, the optical
modulation transfer function (MTF; the absolute value
of the complex optical transfer function) obtained from
the average of the individual-eye Zernike coefficients is
sharper than the average of the optical MTFs obtained
from the same set of coefficients. This happens because
the mean Zernike coefficient for defocus is near zero;
some subjects have positive defocus whereas others
have negative defocus, and these cancel when the
Zernike coefficients are averaged. Given these issues,
we decided to compute CSFs based on PSFs from five
individual subjects selected to cover the range of PSFs
reported by Thibos et al. (2002). The selection process
is described in detail under Selecting representative
Thibos subjects. The results of this analysis are shown
in Figure 5.

Figure 5A depicts the PSF used by Banks et al.
(1987), and Figure 5B–5F depicts the PSFs (at 550 nm)
of the five subjects selected from the Thibos data set.
Here, all PSFs were computed assuming a 3-mm pupil.
Note that the PSF used by Banks et al. has no
dependence on wavelength, whereas the wave-front-
derived PSFs account for both higher order aberrations
and longitudinal chromatic aberration. Figure 5G
compares the ideal-observer CSF obtained with the
PSF used by Banks et al. to the ideal-observer CSFs
obtained using optics of the five selected Thibos
subjects. Note that all CSFs agree at low spatial
frequencies, but the wave-front-derived CSFs fall off
less rapidly than the Banks et al. CSF for spatial
frequencies above 5 c/8. This difference is substantial at
frequencies above 30 c/8, approaching a factor of 5 at
60 c/8. The higher sensitivity arises because the wave-
front-derived PSFs (Figure 5B–5F) are somewhat
narrower than the PSF used by Banks et al. (Figure
5A).

It should also be noted that wave-front-derived PSFs
are typically rotationally nonsymmetric, and we have
found that this asymmetry results in CSFs that are
rotationally symmetric at low spatial frequencies and
become progressively less so as spatial frequency is
raised (typically beyond 16 c/8; data not shown).
Overall, these results show that variations in optics may
lead to considerable individual variation in the CSF at
high spatial frequencies.

In addition to wave-front-derived PSFs, we also
examined other wavelength-dependent optics models:
the model developed by Navarro, Artal, and Williams
(1993), which was based on a double-pass method with
a 4-mm pupil (larger than the 3-mm pupil conditions
we study), and the model developed by Marimont and
Wandell (1994), which was based on a monochromatic
MTF reported by Williams, Brainard, McMahon, and
Navarro (1994) for a 3-mm pupil. The CSFs based on
these two models (data not shown) drop more rapidly
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with spatial frequency than those based on the Thibos
et al. (2002) optics, and faster than the optics used by
Banks et al. (1987), but in the larger view these effects
are not large.

In summary, CSFs derived based on modern
measurements suggest that typical observer optics
enable a higher sensitivity at high spatial frequencies
than the Banks et al. (1987) estimate. We selected the
PSF of Subject 3 as a ‘‘typical’’ human PSF. All
calculations from this point on were conducted using
that PSF.

Inference engine

The ideal-observer calculations reported thus far
characterize the information available in the mosaic
excitations when the spatiotemporal dynamics of the
mean response and the statistics of the noise for the test
and null stimuli are known exactly. This analysis
provides an upper bound on performance, but the

signal-known-exactly assumption is unlikely to match
the computations of the neural mechanisms that
process the cone-mosaic signals. Therefore, it is
important to examine how performance is affected by
inference engines that learn suboptimal decision rules.

Toward this end, we employed inference engines
based on an SVM classifier (Scholkopf & Smola, 2002;
Manning, Raghavean, & Schutze, 2008), which uses
labeled response instances to learn the parameters of a
hyperplane that separates the visual representations of
the test and null stimuli. Here, the visual representation
is at the cone excitations and trial-to-trial variability is
due to Poisson noise, and we have focused on that case.
Variability can also arise due to other factors, such as
fixational eye movements, fluctuations in pupil size and
accommodation, and noise in the neural representation
at sites central to the cone excitations.

Figure 6 illustrates the idea underlying the SVM-
based inference engines in the context of our two-
alternative forced-choice paradigm. Two scenes, one
specifying the test stimulus St and one specifying the

Figure 5. Effects of optics. (A–F) Contour plots of the point-spread functions (PSFs) used at 550 nm. Note that the Banks et al. (1987)

PSF, displayed in (A), is identical across all wavelengths. In contrast, the five individual Thibos et al. (2002) subject wave-front-

aberration-derived PSFs displayed in (B–F) vary with wavelength. We take the PSF of Subject 3, depicted in (D), to represent typical

human optical quality. (G) Contrast-sensitivity functions for five individual PSFs, compared with that obtained using the PSF of Banks

et al. For these calculations we used the eccentricity-dependent density and efficiency LMS-cone mosaic with corrections for the

eccentricity-dependent reduction in macular pigment density.
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null stimulus Sn are processed through the ISETBio
simulation pipeline. A total of N response instances are
computed for each of the test and null stimuli,
Ri

t;R
i
n; i ¼ 1 . . .N. The samples for each stimulus differ

because of Poisson noise. The sample data are divided
into two sets, one used for training and the other for
evaluation (held out data). Response vectors are
formed by concatenating null and test excitations in the
order of the two possible types of trials (test–null or
null–test). For computational efficiency, a dimension-
ality-reduction algorithm may be used to extract a low-
dimensional representation of responses; two dimen-
sions are illustrated in Figure 6 (red and blue data
points). A linear SVM classifier is trained to derive a
separating hyperplane (black line) which maximizes the
separation between the two types of trials, and the
classifier’s accuracy is evaluated on the held-out data.
The entire procedure is repeated for a range of stimulus
contrasts, defining a psychometric function (Pcorrect as a
function of stimulus contrast). A cumulative Weibull
function is fitted to the data, and the contrast level at
Pcorrect ¼ 0.7071 is considered the threshold. We
compared the sensitivity of the ideal observer to that of

different SVM-based computational-observer inference
engines.

SVM-PCA inference engine

The first type of SVM-based inference engine we
used reduces the dimensionality of the signals in the full
cone mosaic to 60 by projecting response vectors to the
space of the 60 principal components derived from the
entire data set. We call this the SVM-PCA engine.

SVM-Template inference engines

The second type of SVM-based inference engine
reduces the dimensionality of the signals in the full cone
mosaic to 20—the number of 5-ms time bins within the
100-ms presentation time—by taking the inner product
of the mosaic response at each time bin with a spatial-
pooling template. We call this engine the SVM-
Template-Linear inference engine. The spatial-pooling
template for each spatial frequency is derived from the
contrast profile of the test stimulus at that spatial
frequency, as described under Inference engine in the
Methods (Figure 13). We also examined another

Figure 6. Illustration of inference engine based on a support-vector machine. Scenes describing the test stimulus St (top left) and the

null stimulus Sn (bottom left) are constructed. Each is run through the ISETBio pipeline multiple times to produce N instances of cone-

mosaic responses to each stimulus, Rit and Rin; i ¼ 1 . . .N. Each response instance includes an independent draw of Poisson

isomerization noise. To simulate a two-alternative force-choice paradigm, composite response vectors are formed, with the response

component to the test stimulus followed by the response component to the null stimulus, and vice versa. A dimensionality-reduction

algorithm may be used to extract a low-dimensional feature set from these composite responses; in this illustrative example, a two-

dimensional set is shown. The data are divided into training and evaluation sets. The training set is used to train a linear support-

vector-machine classifier which learns the parameters of a hyperplane (shown as black line) that optimally separates instances of the

two stimulus orders (null–test, red; test–null, blue). The performance of the classifier—its probability Pcorrect of correctly identifying

the stimulus order—is then obtained on the evaluation set. This process is repeated for a series of stimulus contrasts, leading to a

simulated psychometric function from which threshold is extracted. The black disk in the plotted psychometric function shows

performance for the classifier illustrated in the figure. Threshold contrast (indicated by the blue line) is taken as the contrast that

corresponds to Pcorrect¼ 0.7071 (black dashed line), based on a fit of a cumulative Weibull function to the simulated psychometric

function.
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variant of the SVM-Template engine, which employed
not one but two spatial-pooling templates, with the first
template being matched to the stimulus contrast profile
(as in the SVM-Template-Linear inference engine) and
the second one being derived from the stimulus spatial
quadrature, here a sine-phase grating. In this inference
engine, the inner products of the mosaic response with
each of the two templates are computed, and the
resulting responses are squared and then summed. This
inference engine is inspired by the energy model of V1
complex cell receptive fields (Ohzawa, DeAngelis, &
Freeman, 1990; Emerson, Bergen, & Adelson, 1992),
and we call it the SVM-Template-Energy inference
engine.

Figure 7A depicts the performance of the different
inference engines we examined. In these simulations we
used a 3-mm pupil, the typical human PSF (Subject 3 of
Figure 5), and the cone mosaic with eccentricity-

dependent cone density, efficiency, and macular pig-
ment. We make a number of observations. First, as
expected, the performance of SVM classifiers is worse
than the performance of the ideal observer, with
sensitivity ratios that vary between 0.07 and 0.5 across
the spatial-frequency range (Figure 7A, bottom panels).
Second, the sensitivity ratios of both SVM-Template
inference engines are roughly constant with spatial
frequency, whereas the ratio of the SVM-PCA infer-
ence engine varies with spatial frequency. Third, the
performance of the SVM-PCA inference engine is
worse than that of the SVM-Template-Energy infer-
ence engine for low spatial frequencies, but better for
spatial frequencies above 16 c/8. And fourth, the SVM-
Template-Linear engine is 2 to 3 times more sensitive
than the SVM-Template-Energy engine.

These performance differences between the different
inference engines are consistent with the amount of

Figure 7. Effect of inference engine and training set size. (A) Effects of different inference engines on the contrast-sensitivity function.

In these simulations we used the typical subject points-spread function (Subject 3 from Figure 5/Table 1), the LMS-cone mosaic with

eccentricity-dependent cone density/efficiency/macular pigment density, and a data set consisting of 1,024 response instances. Note

that the various support-vector-machine-based inference engines are 2–15 times less sensitive than the ideal-observer signal-known-

exactly inference engine. (B–C) Psychometric functions for the SVM-PCA and SVM-Template-Energy inference engines, respectively,

for the 8-c/8 stimulus computed using training data sets of different sizes (512–16,384 instances). (D–E) Psychometric functions for

the SVM-PCA and SVM-Template-Energy inference engines, respectively, for the 32-c/8 stimulus, computed using training data sets of

different sizes (512–65,536 instances). The psychometric curves in (B–E) were obtained using the mosaic shown in Figure 4C and the

typical subject point-spread function.
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information that these engines must learn from the
training set. Unlike the ideal observer, the SVM-based
inference engines have to learn the structure of the
noise and the optimal criterion to apply to the
underlying decision variable. Moreover, the SVM-PCA
inference engine has no information regarding the
stimulus, whereas the SVM-Template-Linear inference
engine has knowledge of the stimulus spatial structure
but not its contrast. Further, the SVM-Template-
Energy inference engine has only partial knowledge of
the stimulus spatial structure—the energy operation
removes information regarding stimulus spatial phase.

The spatial-frequency dependence of the SVM-PCA
inference engine’s performance may be due to an
interaction between stimulus dimensionality and
learning. At low spatial frequencies, the activated
mosaics are large and the response vectors have a high
dimensionality. In this case, the SVM-PCA classifier
might be inefficient when we use only 1,024 response
instances to extract the principal components and train
the SVM. On the other hand, 1,024 instances of the
smaller dimensionality responses to higher spatial-
frequency stimuli appears sufficient to train a good

classifier, resulting in a relative increase in performance
with spatial frequency. We suspect that the perfor-
mance of both SVM-Template inference engines is
approximately constant with spatial frequency, relative
to the ideal observer, because these engines are
provided with information about the spatial structure
of the stimuli.

To investigate further, we examined the performance
of the SVM-PCA and SVM-Template-Energy inference
engines as a function of training set size for two spatial
frequencies: 8 and 32 c/8. The psychometric curves of
the SVM-PCA inference engine depend strongly on the
data set size, shifting to the left as the data set size
increases (Figure 7B and 7D). The performance of the
SVM-Template-Energy inference engine is relatively
stable, changing only slightly with the size of the
training set (Figure 7C and 7E).

Figure 8 quantifies the effect of training-data set size
on the computed contrast sensitivity for three stimuli
(8, 16, and 32 c/8), for the ideal observer, the SVM-
PCA, and the SVM-Template-Energy computational
observers. Ideal-observer performance does not depend
on the number of trials because it is computed

Figure 8. Dependence of computed contrast thresholds on the number of training response instances. Data for the ideal observer and

the SVM-PCA and SVM-Template-Energy inference engines are depicted in gray, red, and blue disks, respectively. (A) Spatial

frequency: 8 c/8. (B) Spatial frequency: 16 c/8. (C) Spatial frequency: 32 c/8.
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analytically based on full knowledge of the mean

responses and the noise distribution for each spatial

frequency and contrast. For the SVM-PCA computa-

tional observer, which must learn both the mean

responses and the statistics of the noise, performance

increases with number of training trials, presumably

because the generalizability of the separating hyper-
plane increases with more data. For the SVM-
Template-Energy observer, however—whose spatial-
pooling operation reduces uncertainty regarding the
mean responses—performance is relatively stable with
the number of trials, consistently about 20% that of the
ideal-observer inference engine. SVM-PCA perfor-
mance exceeds SVM-Template-Energy performance
after 8,000, 1,500, and 500 trials, respectively, for the
stimuli at 8, 16, and 32 c/8. So when the number of
trials is high enough for the response dimensionality,
SVM-PCA performs better than SVM-Template-En-
ergy, since no information is thrown away by the
spatial-pooling mechanism. Note that spatial pooling
matched to the contrast profile of the test stimulus is
not the ideal spatial pooling for the case of Poisson
noise, where the appropriate template depends on
stimulus contrast (Geisler, 1989).

If we extrapolate SVM-PCA performance with the
number of trials, we approach ideal-observer perfor-
mance after 16.0 million, 4.9 million, and 1.6 million
trials, respectively, for the stimuli at 8, 16, and 32 c/8.
Computing such large numbers of trials of high-
dimensionality signals is prohibitive in terms of
computational resources. Therefore, given the relative
stability of the SVM-Template engines with respect to
the size of the training data set, we decided to employ
these classifiers for the full simulation in which we
compare performance of computational to human
observers.

Comparison of computational and human
observers’ performance

Figure 9 compares the performance of our compu-
tational observers to the human psychophysical data
reported by Banks et al. (1987). For these comparisons,
all CSFs were computed for a 2-mm pupil to match the
psychophysics, and the various ISETBio CSFs were
derived using our most realistic eccentricity-based
mosaic and the optics of our typical Thibos subject
(Subject 3, but with a PSF computed from the wave-
front aberrations for a 2-mm pupil). We make two
main observations.

First, there are modest changes in relative sensitivity
between our realistic mosaic and optics (red disks) and
our replication of the Banks et al. mosaic and optics
(gray disks). These are a reduction at the lowest spatial
frequencies, due to the eccentricity-varying cone
density, and a slight increase at the highest spatial
frequency examined (here, 50 c/8) due to the wave-
front-based optics.

Second, the use of computational observers (blue
and green disks) results in a major decrease in
sensitivity across the spatial-frequency range, around

Figure 9. Comparison of computation-observer-derived con-

trast-sensitivity functions (CSFs) to CSFs measured in humans.

All CSFs are for 2-mm pupils. The ideal-observer CSF was

derived using the parameters of Banks et al. (1987) and is

shown in gray disks (replotted from Figure 3A). The red disks

depict the CSF derived using the eccentricity-dependent mosaic

(Figure 4D) with eccentricity-dependent macular pigment

corrections, the typical wave-front-based optics (Figure 5E), and

the ideal-observer inference engine. This CSF exhibits a modest

relative sensitivity decrease at the lowest spatial frequencies

but is otherwise close to that computed by Banks et al. A

twofold drop in sensitivity occurs when the inference engine is

switched to the SVM-Template-Linear inference engine (blue

disks), and this drop increases to fivefold for the SVM-Template-

Energy inference engine (green disks). The CSFs measured in

real subjects by Banks et al. are shown in triangles, and the

black line depicts the mean of these subjects’ CSFs, estimated

by fitting the subject data with a double exponential curve. The

CSF measured in human subjects is lower than the SVM-

Template-Energy CSF by a factor of 3–4.
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twofold for the SVM-Template-Linear engine and
fivefold for the SVM-Template-Energy engine. As
mentioned before, these results are consistent with the
amount of information provided to the different
inference engines. Therefore, data-driven inference
engines which learn suboptimal decision rules reduce
sensitivity, bringing the computed CSFs closer to
human measurements.

Discussion

The limits of spatial resolution

We applied the ISETBio computational methods to
clarify how specific properties of the cone mosaic, the
physiological optics, and the inference engine limit
pattern resolution. Our results can be summarized as
follows.

First, the spatial structure of the cone mosaic is an
important factor in limiting the CSF. The CSF is
commonly measured using gratings that cover different
amounts of the mosaic, and the change in the cone
density across the mosaic is dramatic for typical
variation in size with frequency. This variation is partly
compensated by the change in cone aperture, but even
so there remain differences between computations
based on uniform and eccentricity-dependent mosaics.

Second, modern wave-front measurements indicate
better human optics than earlier measurements, and all
else being equal, incorporating the wave-front mea-
surements leads to less attenuation in the ideal-observer
CSF at high spatial frequencies.

Third, the choice of inference engine has a large
effect on the absolute level of performance. Certain
choices bring the computational observer into closer
agreement with measured performance (SVM classifi-
ers). Other choices show that more information is
available in principle (e.g., the signal-known-exactly
ideal observer). The idea that behavior can be
completely described based on the visual representation
at the cone mosaic is, of course, wrong. But the ability
to calculate the information available to an ideal or
computational observer at specific stages of visual
processing provides useful benchmarks to clarify the
aspects of performance that require explanation in
terms of other factors.

Future directions

We are currently investigating the impact of addi-
tional ISETBio computational modules on pattern
sensitivity. These include models of fixational eye
movements and of the nonlinear transformation from

cone excitations to photocurrent (Cottaris et al., 2018).
Further assessments of optical factors beyond the shift-
invariant optics models employed in the present work,
such as the effect of changes in the PSF with
eccentricity (Polans, Jaeken, McNavv, Artal, & Izatt,
2015), are also planned. ISETBio also includes methods
based on computer graphics and ray tracing that
quantify the retinal images of three-dimensional scenes
(Lian et al., 2018). Indeed, these ray-tracing methods
allow for computation of the retinal image from the
scene specification via a model eye, and will also enable
us to consider off-axis pupils and model transverse
chromatic aberration, as well as to model accommo-
dation and depth perception.

Retinal and cortical visual processing transforms the
cone excitations in many ways that affect visual
performance. ISETBio is designed to be extensible, and
the current implementation contains placeholders for
models of multiple parallel mosaics of retinal bipolar
and ganglion cells. For example, understanding the
limits of color sensitivity may be accessible through
these calculations. Opponent processing of signals from
different cone classes is a key step in color coding
(Stockman & Brainard, 2010), and quantifying how
this combination is implemented in neural circuits
remains elusive. Implementing image-computable
models of bipolar and ganglion cells may also clarify
where key gaps exist in our current knowledge of how
these cells operate.

Applications

The enormous growth of the imaging industry is
based on the ability to design and implement new
optical and electronic devices; during this process,
designers inevitably turn to vision science for guidance
in setting parameters. Critical information includes the
standard color observer (Judd & Wyszecki, 1975;
Wyszecki & Stiles, 1982) and knowledge of pattern
resolution (Geisler & Banks, 1995; Wandell, 1995;
Watson & Ahumada, 2004, 2005) and position
resolution (Westheimer, 1981; Klein & Levi, 1985;
Jiang et al., 2017). The computational methods in
ISETBio integrate quantitative models of scenes and
display devices and are useful in supporting the design
and evaluation of new imaging devices.

Medicine is a second important application area. As
treatments for partial sight restoration become feasible,
for example through gene therapy or retinal prostheses,
it will be important to understand the degree to which
the additional information provided to the nervous
system by these technologies supports performance.
The ability to use simulations to model the information
carried by restored representations and understand the
upper limits on visual performance available from them
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should facilitate the design of therapies that can
ameliorate partial and full blindness (Cottaris & Elfar,
2005; Jiang, Wandell, & Farrell, 2015; Beyeler,
Boynton, Fine, & Rokem, 2018; Golden et al., 2019).

Machine learning

An important step to understanding human perfor-
mance is characterizing possible mechanisms that
underlie the visual system’s capacity for flexible and
effective performance across a wide range of tasks.
Human observers underperform ideal observers. One
reason for this is that human observers do not have
access to all the information about the stimulus
available to an ideal observer. Therefore, characterizing
performance using different learned decision rules is
important. Although comparison to psychophysical
CSF data alone may not distinguish between all
plausible decision rules, at the very least we may be able
to rule out candidate decision rules, such as ones that
are sufficiently inefficient that they predict performance
below human levels.

In this article we take only a small step in this
direction, by exploring rather simple forms of learned
rules, some of which (the template-based versions)
share with the ideal observer the fact that knowledge
about the stimulus is provided. We started with the
SVM approach because it is relatively simple and
because its learning is known to have good convergence
properties. Moreover, spatial pooling by weighted sums
is an approximate model for the receptive-field
properties of several neuronal populations (Movshon,
Thompson, & Tolhurst, 1978; Andrews & Pollen, 1979;
Shapley, Kaplan, & Soodak, 1981; Wandell, 1995).
Such inference engines implement a decision variable
that is a weighted sum of the representational input
(here, cone excitations). In addition, the linear classi-
fiers are learned from training data. Basing decisions on
the weighted sum of cone signals that are learned by
linear classifiers may approximate the inference engines
used by real observers’ neural processing better than
the ideal-observer calculation.

Striking to us is the substantial drop in performance
observed when we learn aspects of the decision rule.
This observation motivates future work that explores a
wider range of learned decision rules. Other strategies
that implement suboptimal decision rules are possible,
such as spatial pooling based on banks of primary
visual-cortex receptive fields, or classification images
(Ahumada, 2002; Murray, 2011), in which spatial-
summation templates are learned from a subset of the
responses.

Another inference-engine approach that may be
explored is deep neural networks. Several machine-
learning successes use convolutional neural networks to

analyze images (Kriegeskorte, 2015). The architecture
and parameters of these networks offer inspiration
about how to model cortical circuits, and conversely
there are opportunities to explore how findings from
cortical circuits might be used to implement artificial
neural networks (Khaligh-Razavi & Kriegeskorte,
2014; Yamins et al., 2014). A limitation in the
interaction between vision science and machine learn-
ing arises from the stimulus representation. Convolu-
tional neural networks are typically trained using
digital image values (RGB), which have no biological
basis. The machine-learning work can be more closely
integrated with biology by training on inputs compris-
ing realistic visual signals. The ISETBio simulations are
well suited for converting RGB images into retinal
responses that serve as more biologically realistic inputs
to train artificial neural networks.

Theory and computation

Theory is how we develop a principled understand-
ing of complex systems. Computational models built on
theoretical principles can provide additional insights
about the impact of specific system components and
deviations from the ideal. Coordination between theory
and computation arises in many fields. Rocket design
incorporates Newton’s gravity formulation as well as
computational models of material properties, friction,
and heat. Telecommunications systems incorporate
Shannon’s information theory as well as information
about switching times, conduction delays, and circuit
noise.

In vision science, ideal-observer theory informs us
how to conceptualize the inputs and decision variables
that define system performance. With the enormous
growth of computational power, this formal theory—
which inevitably involves many approximations—can
be extended to account for specific system character-
istics. Modeling the impact of these system components
is important for bridging basic discovery and applica-
tions, say for display engineering or medicine.

Methods

Stimulus

The simulated scenes were designed to match the
stimuli used by Banks et al. (1987): cosinusoidal
patterns windowed using a half-cosine spatial modu-
lation which spans 7.5 cycles of the grating. The
windowing makes the spatial extent of each stimulus
inversely proportional to its spatial frequency, a choice
motivated by the observations that contrast sensitivity
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increases with extent up to a critical size and the critical
size is approximately constant when expressed in terms
of stimulus cycles (Howell & Hess, 1978).

ISETBio scenes are spatially sampled spectral
radiances. The stimuli employed by Banks et al. are
specified in colorimetric units (x, y chromaticity and
luminance). A spectral representation is necessary to
model chromatic aberration, inert pigments, and
absorption of light by the three classes of cone
photoreceptors. To promote the colorimetric specifi-
cation to spectral radiance, we simulated the scenes as
arising from a typical color cathode-ray tube from the
era when their article was published. The critical
display information is the R-, G-, and B-channel
spectral power distributions, the RGB display quanti-
zation, and the pixel spatial sampling. Because our
interest here is not the effect of display properties per
se, we modeled a cathode-ray tube with 18-bit linear
control of the R, G, and B primary intensities. We also
set the pixel spatial sampling to be inversely propor-
tional to the stimulus spatial frequency; consequently,
all stimuli were represented on a 512 3 512 spatial grid
mapped onto the corresponding retinal region in a
manner that took the stimulus size into account. The
spectra we model differ somewhat from those in the
Banks et al. experiment, as that experiment was
performed using a monochrome cathode-ray tube with
a P4 phosphor.

Retinal image

Physiological optics transform the scene spectral
radiance to the retinal image (spectral irradiance). The
transformation can be conveniently grouped into two
parts. First, the scene radiance is transformed to an
idealized retinal spectral irradiance. This transforma-
tion accounts for the pupil diameter (which controls the
amount of light entering the eye), the stimulus distance
and posterior nodal distance of the lens (which controls
the retinal image magnification; Holst, 1989), and the
lens pigment spectral transmittance, which reduces
retinal irradiance in a wavelength-dependent manner
(Stockman, Sharpe, & Fach, 1999). Second, the
idealized retinal spectral irradiance is convolved with a
wavelength-dependent PSF. The PSF is determined by
monochromatic and chromatic aberrations of the
optics as well as diffraction. Blurring by the wave-
length-dependent PSF produces the retinal image.

In general, there are three types of optical aberra-
tions: monochromatic aberrations, longitudinal chro-
matic aberration (LCA), and transverse chromatic
aberration (TCA). Monochromatic aberrations pro-
duce complex deformations in the retinal image that
vary between individuals. LCA is a wavelength-
dependent defocus which occurs due to the wavelength-

dependent refractive index of the ocular media. It is
consistent across individuals and amounts to about 2.2
diopters of defocus across the spectrum in the range of
400–700 nm (Bedford & Wyszecki, 1957; Thibos et al.,
1992; Marimont & Wandell, 1994; Cottaris, 2003).
TCA causes a wavelength-dependent shift in the
position and magnification of the retinal image. It
results from changes in the index of refraction of the
optical elements, combined with misalignment of these
components. TCA varies between individuals and
between the eyes of a given individual (Marcos, Burns,
Moreno-Barriusop, & Navarro, 1999; Harmening,
Tiruveedhula, Roorda, & Sincich, 2012). Because the
optical axis of the eye is not always centered with its
visual axis, TCA can be observed at the fovea. In some
individuals, TCA can be more significant than LCA,
whereas in other individuals it can be minimal (Marcos
et al., 1999). In the present work we model mono-
chromatic aberrations and LCA. We neglect TCA, as
well as changes with wavelength in wave aberrations
other than defocus (Marcos et al., 1999). In addition,
we neglect light scatter due to the ocular media (Vos,
2003) and the Stiles–Crawford effect (Stiles & Craw-
ford, 1933; Westheimer, 2008).

We model monochromatic aberrations using the first
15 Zernike polynomials, which were measured in a
population of 200 human eyes (Thibos et al., 2002).
From a set of Zernike polynomials, we can compute the
wave-front aberration map at the in-focus wavelength
(550 nm), and from this the corresponding PSF
(Goodman, 2005; Watson, 2015). To generate the PSF
for any other wavelength, we add a defocus term d(k) to
the Zernike polynomials according to the formula given
by Howarth and Bradley (1986):

dðkÞ ¼ 633:46 3
1

kfocus � 214:1
� 1

k� 214:1

� �
;

where kfocus¼ 550 nm. The computed PSF is translated
in space so that its center of mass at the in-focus
wavelength is centered at the origin. This is done so as
to eliminate performance differences due to off-
centered PSFs.

Selecting representative Thibos subjects

For the CSF simulations we wanted to choose wave-
front-based optics for a typical subject. As noted
previously, using a wave-front function based on the
mean of the Zernike coefficients across all subjects is
not satisfactory because the cancelation of positive and
negative defocus coefficients in the averaging leads to a
higher optical MTF than is observed in most subjects.
At the same time, deriving typical optics directly from
the mean MTF is not straightforward, because the
MTF does not completely determine the spatial
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structure of the PSF, so additional assumptions are
required.

To deal with this issue we computed CSFs using
optics from five sample eyes from the Thibos et al.
(2002) data set that were chosen to span the range of
measured optical quality. The PSFs of these subjects
are depicted in Figure 5, where we use the term subject
to refer to a specific eye of a particular subject. The
subjects are referred to as Subjects 1, 2, 3, 4, and 5; we
selected Subject 3 as typical. The Zernike coefficients
for these five subjects are provided in Table 1.

We selected the subjects by ranking the entire
population of 200 eyes measured by Thibos et al. and
choosing five subjects whose scores span the range of
computed scores. Subject ranking was done as follows.
First, we computed the singular-value decomposition
of all subject PSFs, separately for each wavelength.
This provided a basis set for representing the PSFs at
each wavelength. We then projected each subject’s PSF
and the mean Zernike-coefficient PSF to the basis set,

separately for each wavelength. A PSF matching score
was computed for each subject based on the mean (over
wavelengths) root-mean-square error between that
subject’s projection coefficients and the projection
coefficients of the mean Zernike-coefficient PSF. Then
we computed the mean MTF (absolute value of the
optical transfer function) across all subjects. An MTF
matching score was computed for each subject as the
mean (over wavelengths) root-mean-square error be-
tween that subject’s MTF and the mean MTF. The
calculations were done for a 3-mm pupil. Subjects were
ranked according to their PSF score (Figure 10), and
the five representative subjects were selected as follows.
Subject 1 was selected because their PSF best resembled
the PSF obtained from the mean of the Zernike
coefficients. Note that this subject’s MTF score is very
low. Subject 2 also has a high PSF score but a much
higher MTF score. Subject 3 has PSF and MTF scores
of similar magnitude. This is the subject we take to
represent typical human optics. Subjects 4 and 5 have

OSA no. Aberration name Subject 1 (98) Subject 2 (132) Subject 3 (54) Subject 4 (194) Subject 5 (21)

0 Piston 0.5693 0.1946 �0.2132 0.0748 �0.4462
1 Vertical tilt 0.0782 �0.0137 0.2232 �0.0396 0.2318

2 Horizontal tilt �0.2519 0.1446 �0.0162 0.0955 0.1148

3 Oblique astigmatism 0.0152 �0.0380 0.0366 �0.0187 �0.0295
4 Defocus 0.0000 �0.0042 0.0182 0.0821 0.1054

5 Vertical astigmatism �0.0145 �0.0472 �0.0432 �0.0252 0.0158

6 Vertical trefoil 0.0079 �0.0188 �0.0437 �0.0046 0.0148

7 Vertical coma 0.0136 �0.0058 0.0515 0.0057 0.0176

8 Horizontal coma �0.0071 0.0014 �0.0131 0.0019 �0.0082
9 Oblique trefoil �0.0054 0.0006 0.0055 0.0126 0.0142

10 Oblique quadrafoil 0.0015 �0.0039 �0.0013 �0.0006 �0.0052
11 Oblique secondary astigmatism �0.0037 0.0037 0.0008 0.0036 �0.0119
12 Spherical �0.0019 0.0106 0.0076 0.0032 �0.0058
13 Vertical secondary astigmatism �0.0020 �0.0032 �0.0106 0.0004 �0.0010
14 Vertical quadrafoil 0.0038 �0.0039 �0.0022 �0.0025 �0.0066

Table 1. Zernike coefficients for the five Thibos subjects. These are taken from the 3-mm-pupil data set of Thibos et al. (2002). The
numbers within the parentheses next to each subject’s number correspond to the index of the ‘‘OU’’ field in the data set, which
contains left and right eyes for the population of 100 subjects. Data for pupils at 4.5, 6, and 7.5 mm are available for these subjects in
the full Thibos et al. data set.

Figure 10. Selecting representative subjects. Scores on point-spread and modulation transfer functions for the population of the 200

Thibos subjects sorted according to their point-spread-function score. The five representative subjects are indicated by the black

squares which connect their scores, with Subjects 1–5 running from left to right in the figure.
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progressively worse PSF scores and low MTF scores
(Figure 10).

Computation of cone excitations (photon
isomerizations)

The main factors that determine how the retinal
image RI(x, y, k) is transformed into a pattern of cone
photoisomerization rates are the macular pigment,
which differentially absorbs short-wavelength photons;
the spectral quantal efficiency, or spectral absorptance,
of the cone photopigment, which controls the propor-
tion of incident photons that get absorbed by the
photopigment; the cone aperture diameter, which
determines the photon-collecting area of a cone and
also acts as a spatial low-pass filter; and the cone
lattice, which controls the spatial sampling of the
retinal irradiance image.

The foveal macular pigment transmittance,
Tmacular(k), is depicted in Figure 11A. Minimum
transmittance is 0.45 at 460 nm. The foveal spectral
quantal efficiencies (absorptances) of different cone
classes qc(k), with c¼ {L, M, S}, are depicted in Figure
11B and are computed based on the Stockman–Sharpe
normalized absorbance values SSc(k) (Stockman et al.,
1999; Stockman & Sharpe, 2000), as

qckðkÞ ¼ qpeak 3 1� 10�ODck
3 SSck

ðkÞ
� �

; ð1Þ

where qpeak is the peak cone quantal efficiency (0.667
for all cone types) and ODck is optical density of cone
type ck (0.5 for L- and M-cones and 0.4 for S-cones).
These values are within the range of optical densities
reported (0.29–0.91 for L-cones, 0.36–0.97 for M-
cones; Renner, Knau, Neitz, Neitz, & Werner, 2004).

Cones exhibit waveguide properties (Enoch, 1961),
according to which light incident on the cone inner

segment is guided to the outer segment, where it gets
absorbed. To model this, we employed a spatially
uniformly weighted circular averaging filter A(x, y),
whose diameter corresponds to the inner-segment
diameter and whose volume is 1. In the Banks et al.
(1987) mosaic, the inner-segment diameter is 3 lm,
whereas in the ISETBio mosaics it is 1.6 lm in the
fovea. The aperture filters and corresponding MTFs for
these mosaics are depicted in Figure 11C. Note that the
MTF at 60 c/8 is 0.63 for the Banks et al. mosaic and
0.89 for the eccentricity-varying cone mosaics. Al-
though we varied the size of the inner-segment diameter
with eccentricity when we computed cone excitations,
we used a constant inner-segment diameter (foveal
value) when computing blur by the cone apertures. This
choice was made for reasons of computational effi-
ciency. We have verified, however, that using the mean
aperture value across all cones in a mosaic produces
essentially indistinguishable contrast-sensitivity curves,
as the effects of the optical PSF dominate the effects of
the aperture.

To compute the spatial distribution of the cone
excitation rate CERc(x, y) for each cone class c, the
retinal image RI(x, y, k) was first filtered with the
macular pigment transmittance Tmacular(k), multiplied
by the corresponding spectral quantal efficiency qc(k)
and integrated numerically over wavelength. The result
was then spatially convolved with the cone aperture
A(x, y):

CERcðx; yÞ ¼
Z
k

RIðx; y; kÞ3TmacularðkÞ3 qcðkÞdk

0
@

1
A

� Aðx; yÞ: ð2Þ

To compute the cone-mosaic excitations we estimate
the mean count of excitation events for each cone
within the simulation time interval, here s¼ 5 ms.

Figure 11. Components of the cone excitation response model. (A) Foveal macular pigment transmittance as a function of

wavelength, Tmacular(k). (B) Foveal spectral quantal efficiencies qc(k) for c¼ L-, M-, S-cones. (C) Foveal cone-aperture filters (inset) and

corresponding modulation transfer functions for the inner-segment diameters considered in this article.
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Specifically, for a cone k of class ck located at
coordinates (xk, yk), the mean count of cone excitation
events CEðkÞ within s ms is computed by spatially
sampling the continuous function CERckðx; yÞ at (x ¼
xk, y¼ yk), multiplying by the cone inner-segment area
a and the time interval s:

CEðkÞ ¼ CERckðx ¼ xk; y ¼ ykÞ3 a 3 s: ð3Þ
Finally, an excitation response instance i for the kth

cone, CEi(k), is generated by sampling from a Poisson
distribution whose mean is equal to the mean count of
excitation events:

CEiðkÞ ¼ Poisson CEðkÞ
� �

: ð4Þ

Eccentricity-dependent macular pigment-density
correction

To model eccentricity-dependent variation in macu-
lar pigment density, we replaced Tmacular(k) in Equation
2 with

Tmacularðx; y; kÞ ¼ 10�ODmacularðx;yÞ3SSmacularðkÞ; ð5Þ
where SSmacular(k) is the spectral sensitivity of the
macular pigment and ODmacular(x, y) is a factor
describing the eccentricity-dependent variation in the
optical density of the macular pigment, modeled as by
Putnam and Bland (2014):

ODmacularðx; yÞ ¼ ODmacularð0; 0Þ

3
3:6028

x2 þ y2 þ 3:6028
: ð6Þ

In Equation 6, ODmacular(0, 0) is the optical density
of the macular pigment at the fovea, which is set to 0.35
(Putnam & Bland, 2014).

Eccentricity-dependent cone-efficiency correction

This computation of isomerization does not take
into account the fact that as eccentricity increases,
inner-segment area increases (Curcio et al., 1990) and
outer-segment length decreases (Banks, Sekuler, &
Anderson, 1991; Jonnal et al., 2017). We approximated
these effects by defining an eccentricity-dependent
correction factor bk for the kth cone located at (xk, yk),
defined as

bk ¼ bISðxk; ykÞ3 bOS
ck
ðxk; ykÞ; ð7Þ

where

bISðxk; ykÞ ¼
aðxk; ykÞ
að0; 0Þ

is the correction factor required to account for the
change in inner-segment area a(xk, yk) at location (xk,

yk) relative to its foveal value a(0, 0). The quantity bOS
ck

ðxk; ykÞ is the correction factor required to account for
the decrease in outer-segment length for cone class ck at
location (xk, yk) relative to its foveal value, and is
computed as the mean value of bOS

ck
ðxk; yk; kÞ over the

wavelength parameter k, with

bOS
ck
ðxk; yk; kÞ ¼

quantal efficiency of cone ck at ðxk; ykÞ
quantal efficiency of cone ck at ð0; 0Þ

¼ 1� 10�ODe
ck
ðxk;ykÞ3SSck

ðkÞ

1� 10�ODck
3SSck

ðkÞ ð8Þ

and

ODe
ck
ðxk; ykÞ ¼ ODck

3
outer segment length at ðxk; ykÞ
outer segment length at ð0; 0Þ : ð9Þ

Ideally, bOS
ck
ðxk; yk; kÞ should be applied within the

integral of Equation 2. For ease of computation, we use
the mean value over all wavelengths of bOS

ck
ðxk; yk; kÞ

and apply the bk correction factor (Equation 7) to the
mean count of excitation events CEk to update the
quantity computed by Equation 3:

CEk  CEk 3 bk: ð10Þ
This allows us to compute a cone excitation count

which takes into account the eccentricity-dependent
changes in cone efficiency due to changes in inner-
segment aperture and outer-segment length. In these
computations, we assume that photopigment concen-
tration and extinction coefficients remain constant
across eccentricity, and we ignore photopigment
bleaching, which is small at these light levels (Rushton
& Henry, 1968).

Cone mosaics

We examined two types of hexagonal cone mosaics:
the regularly spaced hexagonal mosaic used by Banks
et al. (1987), in which cone density is constant across all
eccentricities with a spacing of 3 lm and an inner-
segment diameter of 3 lm, and eccentricity-dependent
mosaics, in which cone density varies with eccentricity.
In eccentricity-dependent mosaics, the desired cone
spacing at the foveola is 2 lm. This corresponds to a
theoretical peak cone density of 287,675 cones/mm2,
which is near the high end of the cone-density range in
human subjects (Curcio et al., 1990). In practice, the
eccentricity-based mosaics used in the primary calcu-
lations, which are synthesized stochastically as de-
scribed later, had peak cone sensitivities in the range of
270,353–290,448 cones/mm2. The ratio of cone diam-
eter to inner-segment aperture was 0.79 across all
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eccentricities, close to the 0.82 suggested by Miller and
Bernard (1983; see also Curcio et al., 1990).

We developed a novel approach for generating
eccentricity-dependent hexagonal mosaics. In this
approach, a cone mosaic is initialized using a regular
hexagonal lattice with node spacing equal to the foveal
cone separation r0,0¼2 lm (Figure 12A1 and 12B1). In
the first iteration, the lattice is subsampled, and a node
located at (x, y) is eliminated with an eccentricity-

dependent probability

Preject ¼ 1� 1

rx;y=r0;0

� �2 ; ð11Þ

where rx,y is the desired cone spacing at (x, y), taken
from Curcio et al. (1990). The subsampled spatial
mosaic approximates the desired eccentricity-depen-
dent cone density, but cone coverage is nonuniform,

Figure 12. Generation of approximately hexagonal mosaics with eccentricity-varying density. (A1–A6) Snapshots of the mosaic at

different iteration stages. (A1) Initialization with a regular hexagonal lattice of the highest density. Blue lines depict isodensity

contours (in cones/mm2) for the desired density profile (Curcio et al., 1990). (A2) Probabilistic subsampling according to the desired

density (Iteration 1). (A3–A5) Iterative lattice adjustment. Red lines depict the isodensity contours for the actual mosaic. (A6) Cone-

type labeling with L-, M-, and S-cones depicted in red, green, and blue disks, respectively. (B1–B5) High-resolution snapshots of the

lattice-adjustment process. The red line segments depict the mutually repulsive forces between select cone pairs, with segment

length denoting force magnitude, and the thick black lines depict the net forces, which determine cone movement. The blue disks

represent the desired spacing, and the gray line segments the actual spacing. (C1–C6) Analysis of minimum, mean, and maximum

cone spacing (within five neighbors) for exemplar cones positioned at horizontal distances of 0, 10, 20, 40, 60, and 80 lm from the

fovea. Note that the minimum, mean, and maximum cone spacing are all converging toward the desired cone spacing, which is

indicated by the dashed lines.

Journal of Vision (2019) 19(4):8, 1–27 Cottaris et al. 20

Downloaded from iovs.arvojournals.org on 04/25/2024



with regions without any cones (Figure 12A2 and
12B2). To improve the uniformity of the mosaic, an
iterative procedure is used (Persson, 2005). In this
approach, a cone and its neighboring cones are
subjected to simulated movement driven by mutually
repulsive forces. The magnitude of the repulsive force
between a target cone i and a neighboring cone j is
given by

Fi
j

			 			 ¼ k3 rdesired
i; j � ractual

i; j

� �
if ractual

i; j , rdesired
i; j ;

0 otherwise:

(
ð12Þ

In Equation 12, rdesired
i; j is the desired cone spacing at

the midpoint between these cones, ractual
i; j is their actual

separation, and k is set to a value .1. Therefore, when
the spacing between two cones is smaller than the
desired spacing, a positive force is generated which
tends to pull these cones apart, whereas when the
spacing is larger than the desired one, no force is acting
between them. The mutually repulsive forces spread
cones around the mosaic, filling in regions with no
cones (Figure 12A2–12A5 and 12B2–12B5). Cones
moved outside of the mosaic boundary are forced back
inside the boundary. To avoid irregularities at the
mosaic edges, the extent of the boundary is usually 20%
larger than the width of the mosaic to be generated.

Cone position is updated based on the net force from
its K neighbors, Fi

net ¼
PK

j¼1 F
i
j , where the K neigh-

boring cones are determined by Delaunay triangulari-
zation. The update rule is pi  pi þ d � Fi

net, where d is
the update step, set to 0.23 r0,0. The iterative position-
adjustment process is terminated when nodes move less
than a threshold value. Snapshots of the mosaic at
iterations 10, 100, and 1,055 are depicted in Figure
12A3–12A5, along with the isodensity contour lines of
the achieved and the desired cone-density profiles.

In the final step, cones are assigned a type L, M, or S,
depending on the specified L/M/S-cone density property,
as well as the desired S-cone mosaic properties, such as a
minimum distance between neighboring S-cones and the
size of a central region free of S-cones (Figure 12A6).

A good agreement in the density profile is obtained
at convergence (here, 1,055 iterations). Figure 12C1–
12C6 depicts a detailed analysis of neighboring cone
spacing for six exemplar cones positioned at horizontal
distances of 0, 10, 20, 40, 60, and 80 microns from the
fovea. Note that the mean cone spacing (across five
neighboring cones) always converges to the desired
cone spacing as the number of iterations approaches
1,000. The minimum and maximum (across five
neighboring cones) spacing are also closely matched to
the desired cone spacing.

An alternative method to generate eccentricity-based
cone mosaics has been proposed by Bradley, Abrams,
and Geisler (2014). That method uses various heuristics
to position cones along isodensity contours around the

fovea, ensuring that cones are no closer than the spacing
implied by a density model. A direct comparison of how
mosaics generated by these two methods compare to real
mosaics remains an interesting topic for future work (see
also Cooper, Wilk, Tarima, & Carroll, 2016).

Inference engine

An ideal inference engine for cone excitations
modeled as Poisson processes is constructed from
knowledge of the mean isomerization counts to the test
and null stimuli. This signal-known-exactly calculation
defines an upper bound on the information that can be
extracted. For more realistic calculations—such as
accounting for uncontrolled fixational eye move-
ments—the cone excitations have additional uncer-
tainty, and across trials the noise is no longer Poisson.
With these additional terms, a simple closed-form
mathematical expression describing the cone excitation
signals across trials may be beyond our reach.

For the general case, it is possible to choose an
inference engine that learns from training examples. In
this study we use SVMs (Scholkopf & Smola, 2002;
Manning et al., 2008) that learn a linear classifier
(Figure 6). A general challenge in the implementation
concerns the high dimensionality of the cone excita-
tions. In this study, for example, the smallest cone
mosaic had 7,460 dimensions (20 time bins3373 cones)
and the largest had 1,400,040 dimensions (20 time bins
3 70,002 cones). To efficiently train inference engines
based on SVM linear classifiers, we applied dimen-
sionality-reduction techniques. In the present study, we
examined three different approaches.

SVM-PCA classifier

For the first dimensionality-reduction technique, we
computed the first 60 principal components of the two
composite responses Ri

t;R
i
n


 �
and Ri

n;R
i
t


 �
. The princi-

pal-components analysis was performed separately for
each spatial frequency and contrast. Binary SVM
classification was performed on the projections of the
response instances into the space spanned by the 60
principal-components analyses. We refer to this classi-
fier as the SVM-PCA classifier.

SVM-Template-Linear classifier

In the second dimensionality-reduction technique, we
employed spatial pooling of cone responses via a
weighting kernel, or template, VðkÞ; k ¼ 1 . . .M, where
M is the number of cones in the mosaic. The spatial
profile of V(k) was derived from the spatial contrast
modulation of the test stimulus: The weight associated
with cone k was the spatial contrast of the test stimulus at
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the location corresponding to the spatial position of that
cone (Figure 13). Note that use of a stimulus-matched
template of this sort would be optimal if mean cone
responses were perturbed only by independent identically
distributed Gaussian noise. For the Poisson-noise model
considered here, there is no single spatial-pooling
template that is optimal across stimulus contrasts.

Spatially pooled responses were computed as fol-
lows. Given a set of null- and test-stimulus response-
instance vectors Ri

nðk; sÞ;Ri
tðk; sÞ; i ¼ 1 . . .N; k ¼

1 . . .M; s ¼ 1 . . .T, we computed the mean response,
over the N instances and T time bins, of each cone k to
the null stimulus, �RnðkÞ. This mean response to the null
stimulus was subtracted from both the test and the null
response-instance vectors, and the inner product
between the mean-subtracted cone excitations and the
template was taken to simulate spatial pooling using
the V(k) template:

Ri
pool;nðsÞ ¼

XM
k¼1

Ri
nðk; sÞ � �RnðkÞ

� �
3VðkÞ; s

¼ 1 . . .T

Ri
pool;tðsÞ ¼

XM
k¼1

Ri
tðk; sÞ � �RnðkÞ

� �
3VðkÞ; s

¼ 1 . . .T:

The spatially-pooled responses Ri
pool;nðsÞ and Ri

pool;tðsÞ
were used to train the SVM linear classifier. In the present
article, in which we concentrate on cone excitation
responses, Riðk; sÞ is the quantity CEiðk; sÞ (Equation 4).

SVM-Template-Energy classifier

This classifier also used spatial pooling but did so via
a pair of weighting kernels V(k) and VQ(k). The VQ(k)

kernel was derived from the contrast modulation of the
spatial-quadrature version of the test stimulus. The
responses of these spatial-pooling mechanisms were
squared and summed, to yield an energy response

Ri
E;tðsÞ ¼ Ri

pool;tðsÞ
� �2

þ Ri
poolQ;tðsÞ

� �2
; s ¼ 1 . . .T:

The spatially pooled energy responses Ri
E;nðsÞ and

Ri
E;tðsÞ were used to train the SVM linear classifier.

ISETBio sample code

Code for all computations in this article is available
at https://github.com/isetbio/isetbio and https://github.
com/isetbio/IBIOColorDetect. An introductory script
is displayed in Figure 14, and a more extensive version
can be found at https://github.com/isetbio/
IBIOColorDetect/tree/master/tutorials/recipes/
CSFpaper1.

Keywords: computational model, computational
observer, contrast-sensitivity function, optics, cone
mosaic, machine learning, simulation, visual
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