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The spectral properties of the ambient illumination
provide useful information about time of day and
weather. We study the perceptual representation of
illumination by analyzing measurements of how well
people discriminate between illuminations across scene
configurations. More specifically, we compare human
performance to a computational-observer analysis that
evaluates the information available in the
isomerizations of cone photopigment in a model human
photoreceptor mosaic. The performance of such an
observer is limited by the Poisson variability of the
number of isomerizations in each cone. The overall
level of Poisson-limited computational-observer
sensitivity exceeded that of human observers. This was
modeled by increasing the amount of noise in the
number of isomerizations of each cone. The additional
noise brought the overall level of performance of the
computational observer into the same range as that of
human observers, allowing us to compare the pattern
of sensitivity across stimulus manipulations. Key
patterns of human performance were not accounted for
by the computational observer. In particular, neither
the elevation of illumination-discrimination thresholds
for illuminant changes in a blue color direction (when
thresholds are expressed in CIELUV DE units), nor the

effects of varying the ensemble of surfaces in the
scenes being viewed, could be accounted for by
variation in the information available in the cone
isomerizations.

Introduction

The spectral properties of the ambient illumination
provide useful information about time of day and
weather. Indeed, variation in natural illumination
spectra occurs during the course of the day (e.g.,
Hernandez-Andres, Romero, Nieves, & Lee, 2001;
Spitschan, Aguirre, Brainard, & Sweeney, 2016), within
single natural scenes (Nascimento, Amano, & Foster,
2016), and when we move between natural and artificial
illumination (Wyszecki & Stiles, 1982). A number of
psychophysical paradigms have been developed to
study the perceptual representation of illumination
(Kardos, 1928; Beck, 1959; Oyama, 1968; Kozaki &
Noguchi, 1976; Gilchrist & Jacobsen, 1984; Noguchi &
Kozaki, 1985; Hurlbert, 1989; Logvinenko & Menshi-
kova, 1994; Rutherford & Brainard, 2002; Logvinenko
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& Maloney, 2006; Lee & Brainard, 2011). Recently, a
number of labs have reported psychophysical threshold
measurements of how well people can discriminate
between illuminations across scene configurations
(Pearce, Crichton, Mackiewicz, Finlayson, & Hurlbert,
2014; Radonjić et al., 2016; Weiss & Gegenfurtner,
2016; Alvaro, Linhares, Moreira, Lillo, & Nascimento,
2017; Radonjić et al., 2018; Aston, Radonjić, Brainard,
& Hurlbert, 2019; see also Lucassen, Gevers, Gijsenij,
& Dekker, 2013).

A key step in interpreting psychophysical threshold
measurements is to understand the degree to which
patterns in the data are driven by variation in the
information available from the stimuli. This has often
been accomplished by comparing human performance
to that of an ideal observer that makes optimal use of
the task-relevant information available in the stimulus
or at some early stage of the visual processing (Barlow,
1962; Green & Swets, 1966; Banks, Geisler, & Bennett,
1987; Geisler, 1989; Sekiguchi, Williams, & Brainard,
1993; Geisler, 2011; Cottaris, Jiang, Ding, Wandell, &
Brainard, 2018). Such ideal observer analyses clarify
which aspects of performance may be accounted for by
the properties of the stimuli and well-understood
mechanisms of early vision.

In this paper, we review previously reported mea-
surements of human psychophysical performance on an
illumination-discrimination task (Radonjić et al., 2016;
Radonjić et al., 2018). We then compare human
performance to that of a computational observer that
uses the information available in the cone photopig-
ment isomerizations to perform the same task. We ask
whether the stimulus dependent changes in human
performance across different illumination changes and
scene configurations are consequences of differences in
the information available to perform the task. The
analysis clarifies which aspects of performance require
additional explanation in terms of the action of visual
mechanisms beyond the isomerization of photopigment
by light.

Our approach shares much with the ideal observer
analysis, but rather than using an analytic calculation
to estimate ideal performance levels, we employ
computer simulations and machine learning. For this
reason, we refer to our approach as a computational-
observer analysis (Farrell, Jiang, Winawer, Brainard,
& Wandell, 2014; Jiang et al., 2017; Cottaris et al.,
2018; cf. Lopez, Murray, & Goodenough, 1992).
Unlike the ideal observer, where the decision rule is
implemented on the assumption that the observer has
perfect information about the statistical properties of
the stimuli, the computational observer must learn
these properties from a large number of training
samples.

Illumination-discrimination
psychophysics: Modeled
Experiment 1

We analyze two similar illumination-discrimination
experiments; we begin by providing an overview of the
first. Detailed methods and results for this experiment
(Modeled Experiment 1) are reported elsewhere
(Radonjić et al., 2018, experiment 2 in that paper, fixed-
surfaces condition), so our overview is brief. The
second experiment (Modeled Experiment 2) is similar
in design and is also reported in detail elsewhere
(Radonjić et al., 2016).

Both modeled experiments measured humans’ ability
to discriminate changes in illumination across four
illumination-change directions—blue and yellow
(which were aligned with the daylight locus) and red
and green (which were orthogonal to the daylight
locus). On each trial of the experiments, observers
viewed three successive computer-generated images,
displayed on a calibrated color monitor. The scene
geometry was held fixed across the experiment, and all
the surfaces in the scene remained unchanged: Only the
spectral power distribution of the illumination varied.
The first image on a trial was presented in the reference
interval (2,370 ms). For this image, the scene was
illuminated by the target illumination, a metamer1 for
natural daylight with a color temperature of approx-
imately 6700 K. The reference interval was followed by
two comparison intervals. The comparison intervals
(870 ms) were separated from each other and from the
reference interval by interstimulus intervals (750 ms).
During each comparison interval, an image of the scene
was again shown. In one comparison interval, the scene
was illuminated by the target illumination and in the
other by a test illumination. The order of the two
comparisons was randomized on each trial. The
observer’s task was to choose which of the two
comparison intervals had scene illumination most
similar to the target illumination. On each trial, the test
illumination was chosen from a pool of 200 prespecified
illuminations. These varied in steps of approximately 1
CIELUV DE unit (CIE, 2004) in each of four
illumination-change directions: blue, yellow, green, and
red (50 steps per direction).2 Figure 1 shows example
images of the scene under the target illumination and
four test illuminations.

During each session, trials probing the four illumi-
nation-change directions were interleaved. The illumi-
nation-change steps were determined through twelve
interleaved 1-up-2-down staircases (three independent
staircases for each illumination-change direction). The
illumination step size for a staircase was decreased
when the observer responded correctly twice in a row
on trials governed by that staircase, and increased each
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time the observer responded incorrectly. Each staircase
terminated after the eighth reversal.

Observers’ thresholds to discriminate illumination
changes were measured for each of the four directions,
relative to the target illumination. Thresholds corre-
sponded to 70.71% accuracy and were determined
using a maximum likelihood fit to the combined data
for all three staircases in each illumination-change
direction. The 70.71% correct criterion was used
because this is the performance convergence point for
the staircases (Wetherill & Levitt, 1965). Observers
completed two experimental sessions, and thresholds
obtained in each session were averaged for each

observer. Each observer’s right eye was tracked using
an Eyelink 1000 (SR Research, Ltd.), which allowed us
to record eye fixation positions on each trial.

Figure 2 illustrates the average thresholds across ten
observers. The average threshold for the blue direction
is elevated relative to those obtained for the other
illumination-change directions, when thresholds are
plotted using the CIELUV DE metric. The elevation for
thresholds in the blue direction has been found in other
studies with a similar design, for scenes where the
average reflectance of the surfaces in the scene is close
to that of a neutral nonselective gray (Pearce et al.,
2014; Radonjić et al., 2016). Two essentially identical
experiments reported with this one (Radonjić et al.,
2018, experiments 1 and A1 in that paper, fixed-
surfaces condition) yielded similar results. We are
particularly interested here in whether the elevation of
threshold in the blue direction has its roots in a relative
paucity of information about this illumination change
in the representation of the visual scene provided by the
cone photoreceptor mosaic, which could arise because
of the relatively small number of S cones in the mosaic.

Computational-observer analysis

We analyze the information available for performing
the illumination-discrimination task present in the
photopigment isomerizations of the cone photorecep-
tors. We used the Image Systems Engineering Toolbox
for Biology (ISETBio; isetbio.org) to model retinal
image formation and the absorption of light in the
foveal cone mosaic. ISETBio provides functions that
model early vision and allow computation of the visual

Figure 1. Experimental stimuli. (A) Image of the scene illuminated by the target illumination. (B–E) Images of the scene illuminated by

four test illuminations. Each illumination is approximately 30 DE steps away from the target. Panels (B–E) correspond to test

illuminations in the blue, yellow, green, and red illumination-change directions respectively. Images in (B–E) are shown at a smaller

size than in (A) to conserve space. In the experiment, the target and test illumination images were the same size. Images rendered

here and in other figures in this paper are illustrative. The rendering process is unlikely to preserve the precise color appearance of

the experimental stimuli.

Figure 2. Experimental results. Thresholds averaged across

observers for Experiment 1. Error bars are 61 SEM. Each point

shows the threshold for one illumination-change direction. Data

originally reported in Radonjić et al. (2018, experiment 2 in that

paper, fixed-surfaces condition).
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system’s responses to calibrated stimuli at various
stages of processing. It includes routines that compute
the photopigment isomerizations of each cone in a
patch of photoreceptor mosaic, accounting for the
scene radiance, lens and macular pigment transmissiv-
ities, image formation by the eye’s optics, and the
spectral sensitivities and interleaved sampling of the
three classes of cones.

ISETBio is written in MATLAB (MathWorks,
Natick, MA) and is freely available under an open-
source software license (isetbio.org). The code and data
required to use ISETBio to reproduce the calculations
and figures in this paper are available at https://github.
com/isetbio/BLIlluminationDiscriminationCalcs. This
repository also includes routines that interface between
the ISETBio representations and MATLAB’s support
vector machine (SVM) implementation, which we use
to implement our computational observer.

Modeling of the stimuli

The stimuli were presented on calibrated computer
monitors with known size and distance from the
observer. In Experiment 1, stimuli were presented to
the right eye only and we modeled the information
contained in the right eye image. In Experiment 2, the
stimuli were presented stereoscopically, but for sim-
plicity we modeled only the information contained in
the left eye image. We imported the RGB stimulus
images into the ISETBio scene format, which uses the
display calibration information to compute the spectral
power distribution of the light emitted from each
location in the image. The scene representation also
specifies the size of the image and the distance between

the display and the eye. These values were set to match
their experimental values.3

The retinal image

We used ISETBio routines to compute the retinal
image from each stimulus image. In ISETBio termi-
nology, this is referred to as the optical image. These
routines incorporate the size of the pupil (6 mm in our
calculations, with this size being estimated from the
luminance of our stimuli using the formulae in Watson
& Yellott, 2012), the geometry of image formation,
absorption of light by the lens, and blurring by the eye’s
optics. We used the ISETBio default estimates of lens
density from Bone, Landrum, and Cairns (1992) and
the polychromatic shift-invariant wavefront aberra-
tion-derived point spread function (PSF) of a typical
subject from the Thibos, Hong, Bradley, and Cheng
(2002) dataset. Cottaris et al. (2018) describe the
method used to select the typical subject from the larger
dataset.

Cone photopigment isomerizations

We estimated the mean number of photopigment
isomerizations in the cones for a 1.18 3 1.18 patch of
foveal retina. We chose small patches of retina because
restricting the analysis to small patches makes calcu-
lation of computational-observer performance tracta-
ble given the current implementation and computing
power. The full analysis is thus achieved by breaking
the image down into a set of patches and aggregating
performance over these patches. Figure 4A below

Figure 3. Examples of learned classification boundaries. (A) Plot of 100 samples of AB data vectors and 100 samples BA data vectors

projected onto the first two principal components of the cone mosaic response space. Data are for the illumination-change step size

DE¼ 1 in the blue direction. The dashed line is the linear SVM decision boundary learned from the 200 samples in this training set.

The variability is due to Poisson noise; no Gaussian noise was added. (B) Corresponding plot with 153 additive Gaussian noise added

to the responses, prior to data reduction by PCA and classification learning. Note that the principal components are not identical

between the two panels, as the PCA calculation was done separately on the two training sets.
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illustrates the layout of the patches relative to the
stimuli for Modeled Experiment 1.

The model cone mosaic was a hexagonal mosaic in
which cone density, cone aperture, and outer segment
length all varied with eccentricity according to mea-
surements by Curcio et al. (1991). The construction of
such mosaics is described in detail in Cottaris et al.
(2018). The peak cone density was 204,213 cones/mm2,
with a corresponding minimum cone spacing of 2.36
microns, which is within the range of foveal densities
reported by Curcio et al. (1991). There were 9629 cones
in all, 6167 (64%) L cones, 3,085 (32%) M cones, and
377 (4%) S cones, corresponding to current views on
the relative numbers of cones of each class in the typical
human retina (Hofer, Carroll, Neitz, Neitz, & Williams,
2005). There were no S cones in the central 0.158, with a
semiregular arrangement of S cones outside this region.
The non-S cones were assigned as L or M randomly
with 2:1 as the expected L:M ratio. Photopigment
absorbance for the L, M, and S cones was taken from
the CIE 2006 standard (CIE, 2006), and absorption by
the foveal macular pigment (Stockman, Sharpe, &
Fach, 1999) was incorporated. These choices, together
with that used for lens density above, yield the CIE
(2006) 28 cone fundamentals. We assumed a quantal
efficiency for cone photopigment of 0.67 (Rodieck,
1998) and a foveal cone inner segment acceptance area
of 1.96 um2, an area that sits between those provided by
Kolb (http://webvision.med.utah.edu) and Rodieck
(1998). We assumed a mean rate of spontaneous

isomerizations of 100/cone-sec, consistent with esti-
mates obtained psychophysically but lower than those
obtained physiologically (see Koenig & Hofer, 2011).
We used a cone integration time of 50 ms and
computed the mean number of isomerizations of each
cone in response to each image. From the mean number
of isomerizations, we can simulate the number of
isomerizations on an individual trial, because trial-by-
trial isomerizations are Poisson distributed (Hecht,
Schlaer, & Pirenne, 1942; Rodieck, 1998). The mean
numbers of L, M, and S cone isomerizations under the
standard illuminant for this experiment, taken across
the image patches, were 439.8, 315.0, and 50.8
respectively for Modeled Experiment 1. For Modeled
Experiment 2, the values were 325.6, 246.3, and 33.4.
Supplementary Table S1 provides the mean number of
isomerizations for all of the illuminations for both
modeled experiments.

Obtaining computational-observer thresholds

Given the responses of a simulated cone mosaic to
the experimental stimuli, we made computational-
observer predictions of discrimination performance for
each illumination-change direction and step size. To do
so, we created a training set consisting of simulated
trials and used this to learn a linear classifier that
separated trials according to which comparison interval
corresponded to the target. Each instance in the

Figure 4. Obtaining computational-observer thresholds. (A) Stimulus for Modeled Experiment 1 with uniform grid superimposed on

top. Each square patch in the grid is 1.18 3 1.18 visual angle. Each patch was analyzed separately. (B) Plot of linear SVM performance

at each stimulus level for one stimulus patch (row three, column one); white outline in (A). Points represent the performance of a

linear SVM trained and tested for each step size for the blue direction with 203 Gaussian noise factor. The best-fit Weibull

psychometric function is depicted with the solid blue line. The horizontal dashed gray line is the 70.71% accuracy level, and the

vertical solid gray line is the threshold (23.7 DE units in this example), calculated using the inverse of the fit function.
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training set had independently drawn noise added to
the mean number of isomerizations for each cone. We
predicted performance by evaluating the classifier on a
separate test set (cross-validation). The test set con-
sisted of additional simulated trials, each with inde-
pendently drawn noise.

We studied performance for individual 1.18 3 1.18
patches of foveal mosaic with a single fixation location
at the center of each patch, which was held constant
across the two comparison intervals. This analysis
quantifies the information available from single patches
of the stimulus. We then investigated how the
information varies across stimulus patches as well as
aggregated across patches. Our approach ignores the
additional information provided in the reference
interval. The motivation for including that interval in
the experiment was to reduce observer’s uncertainty
about which of the two comparison-interval images
corresponds to the target. Our computational observer
was designed so that such uncertainty is not an issue.

For each illumination-change direction and step size,
we calculated the mean number of isomerizations in the
cones of the mosaic to the target-illumination image
patch and the test-illumination image patch. To each
mean response, we added Poisson noise to simulate
trial-to-trial variability in the number of isomerizations
in a single integration time. Then, we concatenated the
resulting two response vectors into a single vector, with
the target coming either first or second. We refer to
simulated trials where the target vector comes first and
the comparison vector second as AB trials, and
simulated trials where the comparison vector comes
first and the target second as BA trials. The task of the
computational observer was to classify AB versus BA
response vectors.

The training and test sets each consisted of 1,000
labeled concatenated response vectors of this sort (500
AB and 500 BA). We used the training set to learn a
linear classifier, i.e., to find the hyperplane which best
separated the two classes (AB versus BA) of concate-
nated response vectors. We did this using the support
vector machine (SVM) algorithm (Manning, Ragha-
vean, & Schutze, 2008), as implemented in MATLAB
(function fitcsvm). This algorithm finds the hyperplane
that maximizes the margin between the exemplars of
the two classes, where margin refers to the amount of
space without any data points around the classification
boundary. Support vector machines provide an effec-
tive tradeoff between good classification performance
on the training set and good generalization.

The dimensionality of the concatenated response
vectors is 19,258 (for two concatenated 1.18 3 1.18
patches of foveal retina). We reduced this dimension-
ality using principal components analysis (PCA). We
first standardized each dimension (i.e., response of one
cone in one interval) of the training set using its sample

mean and standard deviation. Then, we ran principal
components analysis on the training set and projected
the standardized response vectors onto the first 400
principal components for training and testing.

Figure 3A shows the projection of 100 AB and 100
BA vectors from one stimulus patch, using nominal
step size DE ¼ 1 in the blue illumination-change
direction, onto the first two principal components
obtained for this direction and step size. The dashed
line shows the decision boundary of a linear SVM
trained on these vectors. Using this decision boundary
led to performance of 100% on the training set as well
as on the test set, indicating that a computational
observer could perform perfectly on the task even for
this smallest illumination-change step size. Since
human thresholds considerably exceed DE¼ 1, there
are additional sources of noise beyond the Poisson
variation in the number of isomerizations and/or
inefficiencies in the way that the visual system uses the
information provided by the cone photopigment
isomerizations. Indeed, ideal observer studies of human
discrimination performance for simple stimuli often
find that ideal observers outperform human observers
(Geisler, 1989). Because our goal is to understand
whether the pattern of psychophysical performance we
measured is driven by differences in information at the
photoreceptor mosaic, we modeled the inefficiency of
the postisomerization visual system by adding inde-
pendent zero-mean Gaussian noise to each cone’s
response, in addition to the Poisson noise. Doing so
degrades the performance of the computational ob-
server, but in a manner that does not seem likely to
introduce systematic changes in relative computational-
observer performance across illumination-change di-
rections. We set the variance of the added noise for
each cone’s response (both for the target and compar-
ison responses) to a multiple of the mean response of
the cones in the mosaic; we refer to the multiple chosen
as the noise factor. The noise factor was varied
systematically, providing us with a parameter that
allowed us to match performance levels between
computational and human observers. Expressing the
magnitude of the added noise as a noise factor in the
way we do relates the variance of the added noise to the
mean variance of the Poisson noise intrinsic to
photopigment isomerizations, and thus allows us to
understand how much noise had to be added relative to
that intrinsic Poisson noise.

Figure 3B shows the same 100 AB and BA vectors
from 3A, but with 153 (noise factor) Gaussian noise
added to the original responses. These noisy responses
are projected onto principal components computed
from a training set of response vectors with the same
noise factor. The two classes are now overlapping,
illustrating how adding the Gaussian noise reduces

Journal of Vision (2019) 19(7):11, 1–16 Ding et al. 6

Downloaded from iovs.arvojournals.org on 04/25/2024



performance. Indeed performance on the test case for
this set is essentially at chance (51%).

To model the psychophysical data, we trained and
tested SVMs for each combination of illumination
direction, step size, and a series of noise factors. This
provides us with a modeled percent correct for each
combination. Noise factors were varied from 0 to 30 in
steps of 5.4

As noted above, it was not computationally feasible
for us to train the SVM’s using a cone mosaic that
captures the entire stimulus. For this reason, we
partitioned the scene into 1.18 3 1.18 square patches by
imposing a uniform grid onto the stimulus, and then
trained SVM’s for each patch across all combinations
of illumination direction, step size, and noise factor.
Figure 4A illustrates the grid. On the right and bottom
edges of the image, there are small regions of the
stimulus not covered by the grid. These are neglected in
the calculations. To obtain thresholds for each
illumination-change direction and choice of noise
factor for each 1.18 3 1.18 patch, we analyze
computational-observer performance as a function of
step size by fitting a Weibull psychometric function.
This relates computational-observer performance to
illuminant-change step size. In performing the fit, the
actual DE values for each illumination change, rather
than the nominal values, were used (see Radonjić et al.,
2018). The fit was obtained using the maximum-
likelihood method implemented in the Palemedes
Toolbox (Prins & Kingdom, 2018; www.
palamedestoolbox.org, version 1.8.2). Figure 4B shows
computational-observer performance and the fit, for
the blue illumination-change direction at 203 noise
factor, for the patch outlined in white in the upper left
(third row from the top, first column from the left) of
Figure 4A. Using the fitted psychometric functions,
70.71% correct thresholds were extracted.

We verified for one 1.18 3 1.18 patch and one noise
factor (43), for a set of changed illuminations in the
blue direction, that the PCA dimensionality reduction
to 400 did not substantially distort the percent correct
obtained by the SVM-based computational observer,
compared to more time consuming calculations with-
out dimensionality reduction. Supplementary Figure S1
shows percent correct plotted against illumination
change DE, for the full 19,258 dimensional training/test
vectors and for various choices of reduced dimension-
ality. The values for different dimensionalities are
similar to each other and to the value obtained for the
full dimensionality.

Figure 5A shows the computational-observer
thresholds for each illumination direction plotted as a
function of noise factor, for the same stimulus patch
(row three, column one) whose performance for the
blue illuminant-change direction is shown in Figure 4B.
For low added noise, thresholds are very low, as one

would expect based on Figure 3A. As the noise factor
increases, thresholds also increase. The relative order-
ing of the thresholds across illumination-change
directions is preserved across noise factors (yellow .
blue . green . red).

Figure 5B shows performance for a different
stimulus patch, indicated by a white outline in the
lower-center portion of Figure 4A (row 12, column 11).
Thresholds again increase with noise factor, but here
the ordering of thresholds in the different illumination-
change directions is different than in 5A (green . red .
yellow . blue). This effect is due to the difference in
surface reflectance at the two patches. The two patches
for which performance is illustrated in Figure 5A and B
were chosen to illustrate the large effect that patch
choice can have on computational-observer perfor-
mance.

Because predicted performance depends on which
patch is examined, to make overall predictions it is
necessary to aggregate across the individual patches.
There are a number of ways to implement such
aggregation. Here, for each illumination direction, step
size, and noise level, we averaged the percent correct
performance obtained for each of the 270 patches
(Figure 4A) to obtain a single aggregate psychometric
function. We then analyzed this function using the
same methods as for the individual patch data, to
obtain an aggregate threshold as a function of noise
factor. The results of this analysis are shown in Figure
5C. The aggregate performance more closely resembles
the performance in 5A than in 5B, but differs in relative
threshold order (blue . yellow . green . red). The
aggregate thresholds represent an estimate of compu-
tational-observer performance when the information in
all patches is weighted equally.

Relation to psychophysics

For each human observer, we found a single noise
factor that minimized the sum of the squared error
(across the four illumination-change directions) be-
tween the aggregate computational-observer thresholds
(Figure 5C) and human thresholds. Linear interpola-
tion was used to estimate computational-observer
thresholds for noise factors between those for which
performance was explicitly computed. The resulting
computational-observer thresholds across observers
were averaged to provide a fit to the average human
data. This average fit is shown in Figure 6A. The
computational-observer thresholds share with the
human thresholds the elevation in the blue illumina-
tion-change direction relative to the red and green
directions, indicating that the information available to
the visual system at the retinal photoreceptor stage is
already biased across illumination directions. However,
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the difference in the computational-observer thresholds
between the blue and yellow illumination-change
directions is small and does not provide a clear
explanation for the elevation of thresholds in the blue
direction that is generally found in the human
psychophysics, when thresholds are expressed using the
CIELUV DE metric.

The average (across observers) noise factor obtained
in the fitting above was 15.04. This factor provides an
omnibus summary of the net decrease in performance

between the computational and human observers.

There are many factors that likely contribute to the

decrease, including neural noise introduced after the

cone photopigment isomerizations, differences in spa-

tial and temporal integration of information between

the computational and human observers, loss of

information during the interstimulus intervals, and

differences in the decision processes used by the

computational and human observers. The present work

Figure 5. Computational-observer thresholds as a function of noise factor. (A) Computational-observer thresholds from a single

stimulus patch (top left white outline in Figure 4A) for the four illumination-change directions (blue: blue diamonds; yellow: yellow

squares; green: green triangles; red: red circles), as a function of noise factor. (B) Same as (A) but for a different stimulus patch (white

outline in the lower center portion of Figure 4A). The line for the green illumination-change direction does not extend further because

at higher noise levels performance was too poor to estimate a threshold. (C) Aggregated thresholds as a function of noise factor,

obtained by averaging performance over all the patches shown in 4A for each illumination direction/step size/noise factor. The

psychometric function used to obtain the aggregated thresholds was fit to the average performance values taken over all patches.

Figure 6. Comparison of computational and psychophysical performance: Experiment 1. (A) Computational-observer thresholds (black

squares) along with human observer thresholds. The noise factor leading to the best fit to each human observer’s data was found,

and the resulting computational-observer thresholds were averaged over observers. Computational-observer thresholds were

calculated using aggregation over all stimulus patches. Error bars are 6 1 SEM across observers. Data replotted from Figure 2. (B)

Same as (A), except using computational-observer thresholds obtained with fixation-weighted aggregation.
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does not distinguish the contribution of each of these
factors.

Effect of eye fixations

The approach to aggregating the performance across
patches described above weights the information from
each stimulus patch equally. The fixations made by
human observers during the experiment, however,
show that they did not look at each part of the scene
equally often. Figure 7A, 7B, and 7C illustrate the
fixations made a by a single representative observer
across both sessions of the experiment. Panel A shows
the fixations made during the reference interval, while
panels B and C show the fixations made during the first
and second comparison intervals respectively. In all
cases, the fixations generally cluster around one
location in the scene, with the fixations made during the
reference interval slightly more spread out, presumably
because the duration of the reference interval was
longer (2,370 ms vs. 870 ms). A more detailed analysis

of the fixation data is provided in Radonjić et al.
(2018).

One approach to incorporating the fixation data into
the computational-observer calculations is to weight
each stimulus patch in the averaging step according to
the fraction of fixations that landed within that patch
during the two comparison intervals. Figure 7D
illustrates the fixation-based weights for one observer
as a heat map, with the weights for each patch obtained
from the combined data shown in 7B and C. We
incorporated fixation-based weights for each observer
using that observer’s eye fixation data and the
computed thresholds for each illumination-change
direction/step size/noise factor. We then found the
noise factor for each observer that brought the
computational-observer data into best register with
that observer’s data, and then averaged the thresholds
across observers. The results are shown in Figure 6B.
The effect of incorporating eye fixations is not large.
The primary effect is the increase in the difference
between the computational blue and yellow direction
thresholds on the one hand and the red and green
direction thresholds on the other. The difference
between the computational observer blue and yellow
direction thresholds also increased slightly, but re-
mained considerably less than the difference in human
thresholds for these directions. Once the noise factor
was chosen to fit the psychophysical data, the RMSE of
the fit was similar to but slightly worse (6B) than that
obtained with the nonfixation-weighted analysis de-
scribed above (6A).

Information provided by the different cone
classes

The computational-observer thresholds are elevated
in the blue and yellow directions relative to the red and
green directions. This suggests that there is an
asymmetry across illumination-change directions in the
information available at the photoreceptor mosaic,
when step size is expressed in DE units. We were
curious about how the different cone classes contribute
to this asymmetry. We recomputed computational-
observer thresholds for six additional cone mosaics.
These were mosaics with L cones only, M cones only, S
cones only, L and S cones, L and M cones, and M and
S cones. In constructing the dichromatic cone mosaics,
missing L cones were replaced with M cones and vice-
versa, whereas missing S cones were replaced with a
mixture of L and M cones in a 2:1 (L:M) ratio.

Figure 8 shows computational-observer thresholds
for the six additional mosaics (black circles in each
plot) along with the corresponding computational-
observer data for the original trichromatic mosaic
(colored circles in each plot, replotted from black

Figure 7. Eye fixation data. (A) Fixations made by one observer

(observer eom in Radonjić et al., 2018; note that observer

initials are fictional and do not provide identifying information)

during the reference interval, aggregated over all trials for that

observer in both sessions. (B) and (C) Fixations made by the

same observer during the first and second comparison intervals.

(D) Distribution of combined fixations from (B) and (C),

represented as a heat map (yellow indicating a higher number

of fixations and blue indicating a lower number). Each fixation

was assigned to one of the 18 3 18 stimulus patches (see Figure

4A).
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squares shown in Figure 6A). Computational-observer
thresholds for the L, LS, and LMmosaics are similar to
one another as well to those obtained with the original
mosaic. This suggests that the elevation of computa-
tional-observer thresholds in the blue and yellow
directions found with the original mosaic can be
primarily attributed to the pattern of performance
mediated by the L cones: mosaics containing L cones
show the elevation, while those with only M and/or S
cones do not. Possibly, the fact that L cones are the
predominate type in the mosaic leads to the overall
mosaic showing a pattern of performance that is most
similar to the performance of the L-cone-only mosaic.
This in turn might mean that some of the individual
variability observed in illumination-discrimination
performance (see Radonjić et al., 2016; Radonjić et al.,
2018) could be related to individual variability in L:M
cone ratio (Hofer et al., 2005; for a review see Brainard,

2015). We note, however, that there are other
possibilities. For example, there is a systematic
difference in the isomerization rate between L and S
cones because of light absorption by the lens and
macular pigment. This difference might interact with
our choice of SVM linear classifier or our choice to
model postisomerization processing with equal-vari-
ance Gaussian noise.

The relative computational-observer thresholds for
M, S, and MS cone mosaics are also similar to one
another, although sensitivity is lower overall for S, and
these thresholds have a different pattern across
illumination-change directions than that obtained with
L-cone dominated mosaics. Here, computational-ob-
server thresholds for the blue and yellow illumination
directions are the lowest relative to the other color
directions.

Figure 8. Effect of variation in mosaic. Best fit computational-observer thresholds for alternate mosaics (black circles in each panel)

compared to the computational-observer thresholds for the trichromatic mosaic (colored circles in each panel, replotted from the

black squares in Figure 6A). From left to right top row: LS cones only (no M, deuteranope), LM cones only (no S, tritanope), MS cones

only (no L, protanope). From left to right bottom row: L cone only, M cone only, S cone only. Performance aggregation is over all

stimulus patches, as we do not have fixation data corresponding to human observers with the alternate mosaics. The same noise

factor (15.04) is used for all of the di- and monochromatic mosaic computational-observer thresholds shown here. This value is the

average noise factor value obtained for the trichromatic computational-observer thresholds in 6A.
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Aston, Turner, Le Couteur Bisson, Jordan, and
Hurlbert (2016) measured illumination-discrimination
thresholds in dichromats using stimuli similar to those
we analyze. For protanopes (corresponding to our MS
mosaic) there was a relative elevation of human
thresholds in the red and green illumination-change
directions, similar to what we see for the computa-
tional-observer thresholds. For deuteranopes (corre-
sponding to our LS mosaic), however, thresholds in the
red and green illumination-change directions were also
elevated, which is inconsistent with the effect seen with
the computational observer.

Alvaro et al. (2017) also measured illumination-
discrimination threshold in dichromats, but using
stimuli derived from natural hyperspectral images and
only along blue and yellow illuminant-change direc-
tions. They found that thresholds were slightly elevated
overall for dichromats relative to trichromats, with no
statistically significant interaction between observer
type and illuminant-change direction. Given that the
changes in relative computational-observer thresholds
across LMS, LS, and MS mosaics for the blue and
yellow directions are not large, the lack of interaction
may be consistent with the computational-observer
results.

Modeling illumination
discrimination: Modeled
Experiment 2

Radonjić et al. (2016) reported results from an
illumination-discrimination experiment similar to the
one described above, but where across conditions the
ensemble of surfaces in the stimulus scene was varied.
They obtained illumination-discrimination thresholds
for three separate scene surface ensembles, which they
labeled neutral, yellowish-green, and reddish-blue
(based on the appearance of the corresponding images).
The basic methodology of their experiment was the
same as for Experiment 1 above, except for the
variation of surface ensemble and a slightly different
geometric structure of the stimulus scene. Note that in
the experiment, the ensemble of surfaces was held
constant within each trial so that the question
investigated was how the surface ensemble affected
illuminant discrimination, not how well observers could
tell the difference between changes in illumination and
changes in surface ensemble (see Craven & Foster, 1992
for a study of the latter sort). In addition, eye fixations
were not measured. The detailed methods are provided
in the published report (Radonjić et al., 2016). Figure 9
shows the illumination-discrimination thresholds for
each of the surface ensemble conditions (panels D

through F). Illumination-discrimination thresholds
depend strongly on the ensemble of surfaces in the
scene. Radonjić et al. conjectured that the threshold
variation was driven by changes in the information
available in the image to make the discriminations. We
investigate that conjecture here.

We computed computational-observer performance
using the methods described above for the experimental
stimuli of Radonjić et al. (2016). Figure 9 shows the
results of the analysis. The top row (panels A through
C) shows the computational-observer thresholds as a
function of the noise factor for the neutral, reddish-
blue, and yellowish-green scene conditions. The bottom
row (panels D through F) shows the fits of the
computational-observer to the psychophysical data. As
above, the computational-observer noise factor was fit
separately for each observer before averaging across
observers. A single noise factor was found for each
observer, held fixed across the three surface ensembles
and four illumination-change directions. Since eye
fixation data were not available, performance was
aggregated over all stimulus patches with equal weight.

Contrary to the conjecture of Radonjić et al. (2016),
there is little variation in the computational-observer
thresholds across the change in surface ensemble,
relative to the variation in human psychophysical
thresholds. The small effects seen are an overall
decrease in predicted thresholds for the yellowish-green
ensemble (panel F vs. panels D and E) and a relative
decrease in threshold for the red illuminant-change
direction for the reddish-blue ensemble (panel E vs.
panels D and F). These two changes do not capture the
two striking effects in the psychophysical data, a large
decrease in red illuminant-change direction threshold
between the neutral/yellowish-green and the reddish-
blue ensemble, and a large increase in the blue
illuminant-change direction threshold between the
neutral/reddish-blue and the yellowish-green ensemble.

Discussion

We implemented a computational observer that
performs the illumination-discrimination task. The
computational observer analysis incorporates well-
established properties of early human vision, particu-
larly wavelength-dependent optical blur and sampling
by the interleaved LMS cone mosaic, and studies the
implications of these properties for human perfor-
mance. Here, the computational observer has access to
the representation at the cone mosaic, with predictions
of performance based on a learned linear SVM
classifier. By setting up a detailed model of visual
processes up to and including isomerization of cone
photopigment, we ask about the degree to which
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understanding these processes is sufficient to predict
human performance. Across the stimulus conditions we
studied, thresholds determined from the computational
observer’s performance do not predict either the
absolute or the relative performance of human
observers across illumination-change directions and
across variation in the ensemble of surfaces in the
scene. Absolute deviations are not unexpected, as
earlier studies of ideal observer models at the level of
the isomerizations generally reveal an overall difference
in efficiency between human and ideal observers
(Geisler, 1989). It is the relative deviations that are of
most interest. These deviations are particularly clear for
the case where the ensemble of surfaces in the scene was
varied (comparison of computational observer to data
reported by Radonjić et al., 2016). Whereas human
performance showed a large effect of the surface

ensemble, the computational observer’s performance
stayed relatively consistent across the ensembles. In
addition, the computational observer did not account
for the elevated thresholds (expressed as CIELUV DE)
typically seen for illuminant changes in a blue direction.
Thus our results implicate postisomerization processing
as an important determinant of not only the absolute
level of sensitivity to illumination changes, but also the
observed patterns of illumination-discrimination
thresholds.

An attractive feature of the computational observer
analysis is that we can use it to understand how
variation in properties of early vision affects perfor-
mance in well-specified visual tasks. An example of this
is our exploration of the effects of changing the retinal
complement of spectral cone types on illumination
discrimination (Figure 8). As another example, we

Figure 9. Comparison of computational and psychophysical performance: Experiment 2. Computational-observer thresholds as a

function of noise factor for the neutral (A), reddish-blue (B) and yellowish-green condition (C). Computational-observer thresholds fit

to human experimental data are also shown for the neutral (panel D), reddish-blue (E) and yellowish-green condition (F).

Computational-observer performance was aggregated over all stimulus patches (without applying fixation-based weighting, as we do

not have fixation data for these measurements). Fits for panels (D–F) share the same noise factor (11.34). The data in the neutral

condition (panel A) represent an unusual case where human thresholds were not highest in the blue illumination-change direction.

Experimental data originally reported in Radonjić et al. (2016).
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explored the effect of optical blur on illumination
discrimination. Here we found little change in compu-
tational observer thresholds when we eliminated optical
blur from the computational pipeline (results not
shown). This is not surprising, given the relatively large
spatial scale of the stimulus patches relative to the point
spread function of the human eye.

Limitations

Our computational observer incorporates a number
of simplifications. One of these is to implement the
observer on 1.1 3 1.1 patches evenly spaced across the
stimulus, instead of simulating a larger mosaic with
varying cone density that samples the entire stimulus.
This choice was made for computational efficiency,
particularly with respect to learning the classifier. One
long-term goal of our project is to improve the
computational efficiency of our methods so that we can
simulate larger cone mosaics.

We recognize that a complementary approach is to
build simplified calculations that contain only the
information necessary for a specific stimulus and task.
For example, it seems likely that illumination-discrim-
ination performance for our stimuli may be predicted
from the low spatial frequency information in the
retinal image. In that case a simplified model, more
efficient than the full model, might be appropriate. A
special case might replace the fine spatial sampling of a
realistic cone mosaic with a blurred and subsampled
representation that enables efficient computation.

Although implementing special case calculations is
possible, our overall goal is to develop and make
available a quantitative image-computable model of
early visual processing that may be used to analyze
performance on many visual tasks for a wide range of
visual stimuli. For that reason, at this juncture, we
think it is important for us to focus on extending the
model to incorporate visual processing that occurs after
the isomerization of photopigment by light (see
subsection Postisomerization Processes below). We do
acknowledge that special-case calculations derived
from the more general full model also represent an
interesting future direction.

For Modeled Experiment 1, we compared compu-
tational-observer thresholds when we weighted all
stimulus patches equally and when we weighted them
according to observers’ measured eye fixations. The
two analyses yielded similar patterns of thresholds. We
were not able to make this comparison for Experiment
2 nor for hypothetical observers with di- and mono-
chromatic cone mosaics, because we do not have
fixation data available for those cases. There are cases
where which patch the computational observer is
trained and evaluated on has a large effect on

performance (Figure 5A, B). This suggests that the
information about where observers look when they
perform psychophysical tasks is useful for computa-
tional observer modeling.

Other simplifications of our approach were that we
assumed that observers used the information from only
a single patch across the duration of each trial, and that
we restricted our modeling to two comparison inter-
vals, while excluding the reference interval. Building
computational-observer performance models that take
into account the trial-by-trial sequence of eye fixation
locations across the entire trial is an interesting
extension for future research. As with increasing the
size of the modeled cone mosaic, this extension would
also require an increase in computational resources.

Postisomerization processes

Although it is of fundamental interest to understand
how the information available in the responses of the
cone mosaic varies across experimental conditions
within a psychophysical study, it should not be
surprising that there are cases where the rest of the
visual system plays a role in shaping performance.
Indeed, two well-known processes that occur after
photopigment isomerization are likely to influence
performance on the illumination-discrimination task.
First, regulation of sensitivity (aka adaptation) that
begins with the conversion of isomerization rate to
photocurrent within the cones has the potential to
affect postisomerization information (Hood & Finkel-
stein, 1986; Stockman & Brainard, 2010; Angueyra &
Rieke, 2013). As light level increases, this adaptation
limits sensitivity in a manner that dominates the effects
of Poisson-distributed noise in the photopigment
isomerizations, producing Weber’s Law rather than
square root law behavior in the dependence of
threshold on light level. The luminance at which cone
sensitivity regulation is manifest in psychophysical data
depends on the spatial and temporal properties of the
stimulus (Hood & Finkelstein, 1986), but it may well
account for some of the differences between the
performance of the computational observer presented
here and that of human observers.

Second, signals from the three classes of cones are
recombined by postisomerization processing into lu-
minance and cone-opponent channels (Shevell &
Martin, 2017). To the extent that noise following this
recombination limits discrimination, these processes
can have a major effect on the relative sensitivity of the
visual system to stimulus changes in different directions
in color space (for a review, see Stockman & Brainard,
2010). Indeed, it has been shown that cone-opponent
processing plays an important role in shaping sensi-
tivity to modulations in different color directions in
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psychophysical tasks that involve simple colored
stimuli, such as spots or Gabor patches seen against a
spatially uniform background (Wandell, 1995; Stock-
man & Brainard, 2010).

Our current implementation of the computational
observer uses additive zero-mean Gaussian noise as a
proxy for all of postisomerization vision. This noise
does not model stimulus-specific effects, nor should it
be expected to capture all aspects of visual mechanisms
beyond the site of photopigment isomerization. Rather,
it was included because real observer thresholds are
considerably higher than those of the computational
observer, even when we consider only 1.18 3 1.18
patches of retina. We are eager to extend our
computational-observer models to incorporate both the
conversion of isomerization rate to photocurrent and
the recombination of signals from different classes of
cones by retinal ganglion cells, along the lines of the
sequential ideal observer analysis outlined by Geisler
(1989). A computational observer that models multiple
stages of neural information processing in the retina
will likely provide a better account of the experimental
data with less need for an omnibus parameter to reduce
overall efficiency.

Keywords: color vision, illumination discrimination,
ideal observer, computational observer
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Footnotes

1 Metamers for natural daylights were used to match
spectra that could be produced by an apparatus
designed to study illumination discrimination for real
illuminated surfaces. Radonjić et al. (2016) present a
comparison of illumination-discrimination perfor-
mance for scenes consisting of real illuminated surfaces

and graphics-based renderings. Finlayson, Mackiewicz,
Hurlbert, Pearce, and Crichton (2014; see also Pearce et
al., 2014) describe in some detail the daylight metamers
themselves.

2 The value of 1 DE is a nominal step size. The actual
step sizes varied across illuminant directions and
modeled experiments. The actual step sizes were used in
all analyses. See Radonjić et al. (2016) and Radonjić et
al. (2018) for details.

3 Stimulus images in Modeled Experiment 1 were
viewed from 68.3 cm and subtended 20.08 by 16.78 of
visual angle. Images in Modeled Experiment 2 were
viewed from 76.4 cm and subtended 18.68 by 17.38 of
visual angle. The corresponding scene specifications in
ISETBio used the same viewing distances and sizes as
those in the experiments.

4 Because rendering is a stochastic process, it is
possible to train a classifier to distinguish between two
separate renderings of the same scene, even though the
differences are imperceptible to a human observer. In
Modeled Experiment 1, we used 30 separate renderings
of the target image and drew randomly from these on
each psychophysical trial to generate each training/test
set instance. Our modeling followed this same proce-
dure. In Modeled Experiment 2 described below, only
one target image was used in the psychophysics. In the
modeling, we generated seven versions of that same
target image and drew randomly from these to generate
each training/test set instance. The two draws for each
trial (one for target interval and the other for one of the
comparison intervals) were made without replacement.
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