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Purpose: Because age-related macular degeneration (AMD) is a progressive disorder
and advanced AMD is currently hard to cure, an accurate and informative prediction
of a person’s AMD risk using genetic information is desirable for early diagnosis and
potential individualized clinicalmanagement. Theobjective of this studywas todevelop
and validate novel predictionmodels for AMD risk using large genome-wide association
studies datasets with different machine learning approaches.

Methods:Genotype data from 32,215 Caucasian individuals with age of≥50 years from
the International AMD Genomics Consortium in dbGaP were used to establish and test
prediction models for AMD risk. Four different machine learning approaches—neural
network, lasso regression, support vector machine, and random forest—were imple-
mented. A standard logistic regressionmodel using a genetic risk score was also consid-
ered.

Results: All machine learning–based methods achieved satisfactory performance for
predicting advanced AMD cases (vs. normal controls) (area under the curve = 0.81–
0.82, Brier score = 0.17–0.18 in a separate test dataset) and any stage AMD (vs. normal
controls) (area under the curve = 0.78–0.79, Brier score = 0.18–0.20 in a separate test
dataset). The prediction performance was further validated in an independent dataset
of 783 subjects from UK Biobank (area under the curve = 0.67).

Conclusions: By applying multiple state-of-art machine learning approaches on large
AMD genome-wide association studies datasets, the predictive models we established
can provide an accurate estimation of an individual’s AMD risk profile based on genetic
information along with age. The online prediction interface is available at: https://yanq.
shinyapps.io/no_vs_amd_NN/.

Translational Relevance: The accurate and individualized risk prediction model inter-
face will greatly improve early diagnosis and enhance tailored clinical management of
AMD.

Introduction

Age-related macular degeneration (AMD) is a
multifactorial neurodegenerative disease and a leading

cause of vision loss among the elderly in the devel-
oped countries.1,2 The disease affects the central vision
and is progressive, starting with the appearance of
drusen (i.e., the yellow or white deposits in the eye)
and eventually leading to advanced AMD forms: wet
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AMD (choroidal neovascularization) and dry AMD
(geographic atrophy).3 Patients can progress to one or
both forms of advanced AMD. Some patients with
early AMD maintain good vision for a long time
without progressing to advancedAMD,whereas others
quickly developed advanced AMD.

In 2005, Fisher et al.4 reported that the CFH gene
on chromosome 1 and ARMS2/HTRA1 genes on
chromosome 10 were the most replicated gene regions
associated with AMD. Later, with the advances of
technology, multiple genome-wide association studies
(GWAS) were conducted to examine the associ-
ation between AMD and a genome-wide set of
single nucleotide polymorphisms (SNPs). In 2016, the
International AMD Genomics Consortium identified
or confirmed a total of 34 loci with 52 indepen-
dent genetic variants to be associated with advanced
AMD risk.5 From this study, the phenotype and
genotypes of 35,358 subjects were uploaded to dbGaP
(phs001039.v1.p1) and the majority of them are
Caucasians. Multiple studies demonstrated that the
same AMD susceptibility loci were more strongly
associated with AMD in Caucasians than in other
ethnic groups.6–8

Because advanced AMD is currently hard to
cure, an accurate and informative prediction of a
person’s risk for advanced AMD at a young age
using genetic information is desirable for early diagno-
sis, enhanced diet/behavior, and potential individual-
ized clinical management. For example, for individ-
uals with high predicted AMD risks, behaviors that
could decrease AMD risk such as stopping smoking,
keeping a healthy diet with more antioxidants, and
taking appropriate vitamin supplements can be recom-
mended. Earlier or more frequent clinical visits to
monitor the development or progression of the disease
can be also suggested to individuals with high AMD
risks. In this study, our objective was to establish and
validate prediction models for AMD risk based on
genetic variants given any future age of a subject using
the largest publicly available data for Caucasians.

Methods

Sample Description and Genotype Data

The study subjects are from the International Age-
Related Macular Degeneration Genomics Consor-
tium – Exome Chip Experiment dbGaP dataset
(phs001039.v1.p1), which gathered samples from 26
studies. There are 32,215 Caucasians among the total
35,358 subjects. Genotypes were imputed with the 1000
Genomes Project as the reference panel. A total of

13,503,037 genetic variants are included. The detailed
subject recruitment, ascertainment of AMD sever-
ity and genotyping procedures have been reported
elsewhere.5

In addition, we extracted a set of 383 Caucasian
subjects with macular degeneration (i.e., all AMD
cases) and 400 randomly selected Caucasian controls
>50 years old from the UK Biobank9 as an indepen-
dent test dataset. The cases were determined by the
self-reported macular degeneration code (Data-Field
20002, illness code 1528). Although we randomly
selected 400 controls, these non–self-reported AMD
subjects may still have macular degeneration (e.g.,
owing tomissed reporting or the disease occurring after
recruitment). The UK Biobank is the largest and most
complete European Biobank available at present.

Different Scenarios

We considered two main classification scenarios: (1)
advanced AMD cases versus normal controls and (2)
any AMD cases (i.e., both intermediate and advanced
AMD) versus normal controls. In addition, we also
considered another two binary outcome classification
scenarios in the supplementary material: (3) inter-
mediate AMD cases versus normal controls and (4)
advanced AMD cases versus intermediate AMD cases.

Feature SNPs Selection

First, we randomly divided our entire dbGaP data
into a test dataset of 5000 samples and a training
dataset of the remaining 27,215 samples. For each
aforementioned classification scenario, we used the
training dataset only to conduct the GWAS analysis to
select feature SNPs as inputs for predictionmodels. The
test dataset remains intact andwas saved for the predic-
tion performance evaluation. For all the classification
scenarios, the GWAS was conducted using a logistic
regression under an additive genetic model, adjusting
for age, gender, and the first two principal compo-
nents calculated based on genotypes (for controlling
population stratification). We then selected genome-
wide significant SNPs with a P value of <5 × 10−8 as
the feature SNPs in two ways. In the primary list of
feature SNPs, only the top one SNP (with the smallest
P value) from each of the significant loci was selected.
In a secondary list of feature SNPs, all genome-wide
significant SNPs were selected. In another secondary
SNP list, all SNPs with a P value of <1 × 10−5 were
selected. We only considered SNPs with minor allele
frequency of >0.01. In addition to the selected SNPs,
we also included age as a predictor in the prediction
model, because it is known to be associated with AMD
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risk and the model predicts the AMD risk at that given
age.

Machine Learning Methods

We considered four machine learning methods in
this study: neural network (NN), lasso regression
(Lasso), support vector machine (SVM), and random
forest (RF). As a comparison, we also fitted a standard
logistic regression using a genetic risk score (GRS), as
described in the following paragraph.

First, a multilayer feedforward NN was imple-
mented using Keras.10 All layers were fully connected
(Supplementary Fig. S1). We used two hidden layers
with 16 nodes each and the L1 norm regularization
with a tuning parameter lambda of 0.0001 at the input
layer. Because a NN can learn complex relationships
between predictors and outcomes, it might be expected
to be superior to the ones based on a linear relation-
ship (e.g., the standard logistic regression with a lasso
penalty). A NN is often considered as a “black box”
owing to its complex inner architecture. To better inter-
pret the predictions, local interpretable model–agnostic
explanations were applied, which perturbs the input of
data samples and evaluates how the predictions change.
A 10-fold cross-validation was performed within the
training dataset to find the best epoch (i.e., iteration
number) with the lowest loss, which was then used in
the test dataset for evaluation. Second, a Lasso was
implemented using the R function glmnet.11 Because
different tuning parameter lambda values in NN and
Lasso led to similar results, for the sake of simplicity,
we used the same lambda value for NN and Lasso.
Moreover, linear SVM and RF were implemented
using the R package caret.12 Finally, we also computed
a GRS: GRS = ∑p

i=1(βiGi)/
∑p

i=1 βi, where β i is the
log(odds ratio) of the risk variant i, obtained from our
GWAS result for each classification scenario (similar
approach was described in Ding et al.13) and Gi is the
corresponding genotype (coded as 0, 1, and 2: copies
of risk allele). Here p is the number of feature SNPs
we selected, and the same set of SNPs were used in
all four machine learning approaches. Note that in this
coding all β i are positive and GRS ranges from 0 to
2. Then a standard logistic regression was fitted with
this GRS and age as the predictors. We refer to this
method as GRS. For the binary outcome classification,
we calculated the area under the curve (AUC) of the
receiver operator characteristic curves as the primary
performance metric. The Brier score14 was used as a
secondary metric, where a lower Brier score indicates
a better prediction. Note that the useful benchmark
value for the Brier score is 33%, which corresponds to
predicting the risk by a random number drawn from

a uniform [0, 1] distribution. Model performance was
evaluated in the separate test datasets.

Results

Study Data Characteristics

Detailed demographic and clinical characteris-
tics of the entire dbGaP participants have been
described elsewhere.5 In this study, the total sample
size (Caucasians) was 32,215, the mean age was 73.8 ±
9.3 years, and women comprised 57.6% (n = 18,554) of
the cohort (Table 1). Specifically, 14,348 were normal
controls, 5290 were intermediate AMD cases, and
12,577 were advanced AMD cases, including 2644
geographic atrophy cases, 8430 choroidal neovascular-
ization cases, and 1503 geographic atrophy/choroidal
neovascularization mixed cases. As the AMD severity
increased from no to intermediate to advanced AMD
the mean age in those groups increased from 70.6 ±
9.5 to 74.7 ± 8.5 to 77.0 ± 8.0 years (Table 1 and
Supplementary Fig. S2). The percentage of women
among the intermediate or advanced AMD cases
(59.2% and 58.9%) was higher than that in the normal
controls (55.9%; Table 1).

Feature SNPs Selection from GWAS of AMD

As shown in Figure 1 and Supplementary Figure S3,
and Supplementary Table S1, the scenario 1 GWAS of
advanced AMD cases versus normal controls resulted
in the most number of genome-wide significant (P <

5× 10−8) loci (18 loci [CFH,ADAMTS9-AS, COL8A1,
CFI, C9, C2/CFB/SKIV2L,VEGFA,ARMS2/HTRA1,
ACAD10, B3GALTL, LIPC, CETP, CTRB2/CTRB1,
C3, APOE, C20orf85, SYN3/TIMP3, and SLC16A8]
that include 5233 SNPs). All these loci were reported
in Fritsch et al.,5 which also compared advanced AMD
cases and normal controls. We did not capture all of
the Fritsch et al.5 previously reported loci because we
only used a subset of subjects in our GWAS and only
analyzed common variants with minor allele frequency
of >0.01. The scenario 2 GWAS of any AMD cases
versus normal controls also identified many significant
loci (16 loci with 5553 SNPs) and most of them were in
the scenario 1 GWAS as well. However, TNFRSF10A
from chromosome 8 and SMG6 from chromosome
17 were newly identified, which were not reported by
Fritsch et al.,5 possibly because of the inclusion of
intermediate AMD cases. The scenario 3 GWAS of
intermediate AMD cases versus normal controls and
the scenario 4 GWAS of advanced AMD cases versus
intermediate AMD cases identified fewer significant
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Table 1. Characteristics Summary of the dbGaP Dataset

N Females, n (%) Age, Years (Mean ± SD)

All 32,215 18,554 (57.6) 73.8 ± 9.3
Normal controls 14,348 8021 (55.9) 70.6 ± 9.5
Intermediate AMD cases 5290 3131 (59.2) 74.7 ± 8.5
Advanced AMD cases 12,577 7402 (58.9) 77.0 ± 8.0

Figure 1. Manhattan plots of P values and odds ratios (ORs) from GWAS. (A) Scenario 1: advanced AMD cases versus normal controls. (B)
Scenario 2: any AMD cases versus normal controls. The red horizontal line indicates the genome-wide significance threshold (P= 5× 10−8).
When original ORs are less than 1, new ORs equal to 1/ORs are shown in the plots.

loci (4 loci with 1583 SNPs, and 5 loci with 1228 SNPs,
respectively), because the intermediate AMD category
typically contains individuals with a wide range of
disease severity, which can be close to either no or
advanced AMD. The power could be another issue
owing to a much smaller sample size of intermedi-
ate AMD cases. Although few loci were detected, the
scenario 4 GWAS identified ABHD2 from chromo-
some 15, which was not reported by Fritsch et al.5 This
gene could be useful for differentiating intermediate
and advanced AMD.

Prediction Performance

In our primary list of feature SNPs, we used the top
one SNP from each of the genome-wide significant loci
plus age as predictors. Five model approaches includ-
ing NN, Lasso, SVM, RF, and GRS were performed
for each scenario. Each model was trained in the train-
ing set and evaluated in the test set. The AUC values
and Brier scores based on the test set are presented
in Table 2. The receiver operator characteristic curves
and 95% confidence interval (CI) of the AUC using the
DeLong method15 were also reported in Figure 2 and
Supplementary Figure S4. Scenario 1 showed overall

good predictions (AUCs between 0.81 and 0.82 for all
five approaches). For scenarios 3 and 4, all five predic-
tion methods did not perform well (AUCs between
0.61 and 0.68). The reasons could be that a wide range
of samples fell into the category of intermediate AMD,
which could be close to either controls or advanced
AMD cases. Scenarios 2 also showed reasonably good
performance (AUCs of 0.78). The density curves of
predicted risks were generated and shown in Figures 3
and Supplementary Figure S5. Such plots allow us
to visually examine the two counterparts from each
comparison scenario separately. Similar to the AUC
results, the scenarios 1 and 2 showed clear separation.
On the contrary, scenarios 3 and 4 led to ambiguous
results. The individual feature importance heatmaps
from local interpretable model–agnostic explanations
(Fig. 4 and Supplementary Fig. S6) for NN further
indicated that CFH and AMRS2/HTRA1 contributed
the most to the predictions (marked with darker
colors). Note that the green vertical lines indicate that
the feature supports the predicted classification for
that subject and the red vertical lines indicate that
the feature contradicts the predicted classification (or
equivalently, supports the counterpart of the predicted
classification). Note that the local interpretable
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Table 2. AUC Values (95% CI) and Brier Scores (95% CI) of the Prediction of Scenario 1 (Normal Controls vs.
Advanced AMD Cases) and Scenario 2 (Normal Controls vs. Any AMD Cases)

Normal Controls vs. Advanced AMD Cases Normal Controls vs. Any AMD Cases

AUC Brier Score AUC Brier Score

NN 0.82 (0.81–0.83) 0.17 (0.17–0.18) 0.78 (0.77–0.80) 0.19 (0.19–0.20)
Lasso 0.82 (0.81–0.83) 0.17 (0.17–0.18) 0.78 (0.77–0.80) 0.19 (0.18–0.19)
SVM 0.82 (0.81–0.83) 0.17 (0.17–0.18) 0.78 (0.77–0.80) 0.19 (0.18–0.19)
RF 0.81 (0.80–0.82) 0.18 (0.17–0.18) 0.78 (0.76–0.79) 0.19 (0.19–0.20)
GRS 0.82 (0.81–0.83) 0.17 (0.17–0.18) 0.78 (0.77–0.80) 0.19 (0.18–0.19)

AUC 95% CI uses the DeLong method15; Brier score 95% CI uses the bootstrap method.

model–agnostic explanations heatmaps plotted the
risk alleles of all SNPs, which are on the same scale
(additive model, 0–2), but age is on a different scale
(>50 years). Thus, although the color of age looks
light, it is a very strong predictor. We further inves-
tigated the age effect on AMD risk by predicting a
test dataset with age from 50 to 90 years and all SNPs
with common homozygous genotypes. The results
(Supplementary Fig. S7) showed that both advanced
and any AMD risks increased as age advanced.

In the secondary list of feature SNPs, we used
all genome-wide significant SNPs and age as predic-
tors. We applied NN and Lasso, but not SVM or
RF, because they are not suitable for a large number
of predictors. GRS was also excluded, because with
all genome-wide significant SNPs, a larger number of
less significant SNPs in linkage disequilibrium may
contribute more to the prediction than a single very
significant SNP, leading to a suboptimal GRS. On
the contrary, NN and Lasso assigned penalties to the
highly correlated features, which accounted for the
correlations among SNPs in high linkage disequilib-
rium. Although the results were similar to the previ-
ous parsimonious models, NN showed slightly better
AUCs than Lasso by an average of 0.01 (Supplemen-
tary Figs. S8 and S9; Supplementary Table S2). In
another set of secondary list of feature SNPs with
a P value of <1 × 10−5, the prediction accuracy
did not improve in terms of AUCs (Supplementary
Fig. S10). We also conducted NNmodels using the top
SNPs from each of the significant loci as predictors
without age to predict an individual’s average AMD
risk (across the lifetime), and the results showedmoder-
ate accuracy (Supplementary Fig. S11). For example,
the AUC for predicting advanced AMD versus no
AMD is 0.77 (95%CI, 0.75–0.78). Finally, we evaluated
the performance in a non-Caucasian test dataset from
the same dbGaP project to assess whether our train-
ing results from Caucasians could be applied to non-

Caucasians. This non-Caucasian test dataset included
a mixed population of Africans, Asians and subjects
with unknown ancestry. The results (Supplementary
Table S3) showed that the prediction is worse in non-
Caucasians (e.g., AUC of 0.72–0.74 in NN) than in
Caucasians (e.g., AUC of 0.82–0.83 in NN).

In addition to the test dataset we generated from
the dbGaP, we validated our prediction models on
the 383 independent AMD subjects (of a mixture of
AMD stages) and 400 random controls from the UK
Biobank.9 All models produced similar results and we
only present NN result using the top SNPs from each
of the significant loci plus age as predictors here. The
result showed moderate accuracy with an AUC of 0.67
(95% CI, 0.63–0.71). Moreover, when we excluded age
from the model and only kept SNPs, the accuracy
for predicting average lifetime AMD risk produced an
AUC of 0.65 (95% CI, 0.61–0.69).

We have implemented the established prediction
model from the NN approach for the scenario of
predicting any AMD (vs. normal control) using R
Shiny, which is available at https://yanq.shinyapps.
io/no_vs_amd_NN/. Note that the final predicted
AMD risk output from this app is adjusted for
population prevalence (see the Supplementary Text for
details).

Discussion

AMD is one of the most successful diseases for
GWAS with multiple consistently replicated loci. The
dbGaP (phs001039.v1.p1) dataset from the Interna-
tional AMD Genomics Consortium is the largest
publicly available genotype dataset by far, with 35,358
subjects. Our results demonstrate that only using SNPs
along with age could predict AMD risk accurately in
Caucasians.
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Figure 2. Receiver operator characteristic (ROC) curves of the
predicted risk. (A) Scenario 1: advanced AMD cases versus normal
controls. (B) Scenario 2: any AMD cases versus normal controls.

We did not directly use the 52 SNPs from 34
reported loci from Fritsch et al.5 as predictors, because
the use of these loci may lead to model overfit-
ting; they were identified using the entire consor-
tium data, which include both our training and test
datasets. To select our feature SNPs for predictions, we
conducted separate GWAS for four scenarios compar-

ing among normal controls, intermediate AMD cases,
and advanced AMD cases. To the best of our knowl-
edge, these are the first large GWAS accounting for
intermediate AMD. Most of the genome-wide signifi-
cant SNPs from these four GWAS were identified from
the previous large AMD GWAS.5 However, ABHD2
from chromosome 15 was identified for the first time
in the comparison between advanced AMD and inter-
mediate AMD; and TNFRSF10A from chromosome
8 and SMG6 from chromosome 17 were identified in
the comparison between any AMD cases and normal
controls. They were not observed previously, because
only the comparison between advanced AMD and no
AMD was studied before. We also conducted a fifth
scenario comparing dry and wet AMD cases (results
not shown). The SNPs from ARMS2/HTRA1 and
MMP9 showed significantly different genetic effects
between dry and wet AMD. However, these two genes
were not able to classify dry and wet AMD. For the
reference, we also used the 52 reported SNPs5 in our
predictionmodels and the results showed slightly better
prediction accuracy than our selected feature SNPs
(Supplementary Fig. S12). This is likely due to the use
of test data information in the training step, as we
explained elsewhere in this article.

All five model approaches provided similar predic-
tion results. The prediction for advanced AMD versus
normal controls had the best performance, which is
not surprising, because they two are most distin-
guishable. However, the prediction for any AMD
versus normal controls could be more clinically useful
as it covers subjects with all possible AMD stages.
The parsimonious models with only one top SNP
from each significant locus achieved equivalent predic-
tion performance compared to the models using all
significant SNPs and thus are preferable in practical
use.

In this study, we considered five predictionmethods:
NN, Lasso, SVM, RF, and GRS. For the primary
list of feature SNPs, they all achieved similar predic-
tion accuracy. For the secondary list of feature SNPs
(Supplementary Figs. S8 and S10), NN consistently
had slightly higher AUCs than Lasso. One of the
advantages that NN has as compared with Lasso is
thatNNaccounts for nonlinear relationships and inter-
actions among predictors in addition to the linear
relationship that Lasso accounts for. The NN is equiv-
alent to Lasso when only input and output layers are
includedwith aL1 norm at the input layer (Supplemen-
tary Fig. S1).

Age is an important predictor. A logistic regres-
sion showed that age alone could provide moderate
accuracy for predicting AMD risk (Supplementary
Fig. S13). Our predictive models established from all
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Figure 3. Density curves of the predicted risk for the two counterparts for five prediction methods. (A–E) advanced AMD cases versus
normal controls, and (F–J) any AMD cases versus normal controls.

Figure 4. Feature importance heatmaps from local interpretable model–agnostic explanations for NN. (A) Scenario 1: normal controls
versus advanced AMD cases. (B) Scenario 2: normal controls versus any AMD cases.

five approaches can predict a person’s AMD risk at any
future age >50 years old.

Our study has some limitations. It could be more
useful to predict the time-to-progression (to advanced
AMD) risk instead of predicting the AMD risk at a
given age, because the AMD status is dynamic and
may change as time goes by. Another limitation is that
primary test dataset from dbGaP are not completely
independent from the training dataset since they all
come from 26 studies. The secondary test dataset from
UK Biobank (which is completely independent) is
relatively small. In this study, NN does not show a clear
advantage over the other competing approaches, which
suggests that most popular prediction approaches can

achieve satisfactory results for predicting AMD risk
predictors so long as the feature SNPs are correctly
identified. NNmight be more advantageous than other
approaches in the case with a large number of predic-
tors and complex among predictor relationships.

Data Availability

The AMD GWAS data for the model develop-
ment were obtained from the publicly available reposi-
tory dbGaP with accession number phs001039.v1.p1.
The additional independent validation data were
obtained from the UK Biobank. The interface of the
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established prediction model is freely available at https:
//yanq.shinyapps.io/no_vs_amd_NN/.
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