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Purpose: To develop and train a deep learning-based algorithm for detecting disorga-
nization of retinal inner layers (DRIL) on optical coherence tomography (OCT) to screen
a cohort of patients with diabetic retinopathy (DR).

Methods: In this cross-sectional study, subjects over age 18, with ICD-9/10 diagnoses
of type 2 diabetes with and without retinopathy and Cirrus HD-OCT imaging
performed between January 2009 to September 2019 were included in this study.
After inclusion and exclusion criteria were applied, a final total of 664 patients
(5992 B-scans from 1201 eyes) were included for analysis. Five-line horizontal raster
scans from Cirrus HD-OCT were obtained from the shared electronic health record.
Two trained graders evaluated scans for presence of DRIL. A third physician grader
arbitrated any disagreements. Of 5992 B-scans analyzed, 1397 scans (∼30%) demon-
strated presence of DRIL. Graded scans were used to label training data for the convolu-
tion neural network (CNN) development and training.

Results: On a single CPU system, the best performing CNN training took ∼35 mins.
Labeled data were divided 90:10 for internal training/validation and external testing
purpose. With this training, our deep learning network was able to predict the presence
of DRIL in new OCT scans with a high accuracy of 88.3%, specificity of 90.0%, sensitivity
of 82.9%, and Matthews correlation coefficient of 0.7.

Conclusions: The present study demonstrates that a deep learning-based OCT classi-
fication algorithm can be used for rapid automated identification of DRIL. This devel-
oped tool can assist in screening for DRIL in both research and clinical decision-making
settings.

Translational Relevance: A deep learning algorithm can detect disorganization of
retinal inner layers in OCT scans.

Introduction

Diabetic retinopathy (DR) is a common sight-
threatening complication of diabetes and represents a
leading cause of blindness among working-aged adults
worldwide.1 Recent population-based studies estimate
a global prevalence of 103.12 million adults with DR.1
Of that population, a predicted 28.54 million adults
experience sight-threatening disease.1

Although current therapies for DR and diabetic
macular edema (DME) are effective, early detection
of disease and prompt management facilitate optimal
treatment outcomes.2 Use of accurate screening tools
that refer the correct population of patients to retina
specialists is key. Optical coherence tomography (OCT)
is one imaging modality that is routinely used in
clinical practice for screening patients for diabetic
retinopathy. Although certain OCT imaging biomark-
ers are established (i.e., intraretinal fluid for DME), the
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clinical significance of other biomarkers, such as disor-
ganization of retinal inner layers (DRIL), remains
to be determined.3,4 Presence of DRIL has been
shown to be associated with reduced visual acuity,5–7
reduced retinal function,8 ellipsoid zone disruption,9
and thinning of retinal nerve fiber layer.9 However,
DRIL can be challenging to detect, because OCT
changes may be subtle, especially in early or mild cases
of DR.7

Recent advances in artificial intelligence have shown
great potential in rapid, automated, and accurate
medical decision-making in ophthalmology.10,11 Deep
learning (DL)—a subset of machine learning and
artificial intelligence—is a convolution neural network
(CNN)–based learning algorithm that can be applied
to the interpretation and classification of clinical
imaging. Trained and optimized, CNNs have the
capability to identify unique imaging features and
classify images with high accuracy.10,11 Recently, OCT-
based DL algorithms have been used to detect central
serous chorioretinopathy,12 ellipsoid zone defects,13
and intraretinal fluid.14

Accurate and automated detection of DRIL byDL-
based algorithms represents one strategy for standard-
izing interpretation of DRIL. In this study, we modify
pretrained CNNs to create a neural network best suited
to identifying the imaging biomarker DRIL, in OCT
imaging from a cohort of diabetic patients.

Methods

Subject Selection

Study subjects were selected for inclusion in a
cross-sectional study approved by the Cleveland Clinic
Foundation Institutional Review Board. Research
adhered to the tenets of the Declaration of Helsinki
and complied with Health Insurance Portability and
Accountability Act privacy and security regulations.

Table 1 represents the demographic of included
subjects. Inclusion criteria for subjects included age
over 18, ICD-9/10 diagnoses of type 2 diabetes with
and without retinopathy, and Zeiss Cirrus HD-OCT

Table 1. Sample Characteristics of Entire Study Cohort and by DRIL Status

DRIL Status*

Sample Characteristics Count (%) Total n = 1201 DRIL n = 410 (34.1%) No DRIL n = 791 (65.9%)

DR Severity
No DR 689 (57.4%) 94 (22.9%) 595 (75.2%)
Mild NPDR 199 (16.6%) 88 (21.5%) 111 (14.0%)
Moderate NPDR 88 (7.3%) 50 (12.2%) 38 (4.8%)
Severe NPDR 54 (4.5%) 40 (9.6%) 14 (1.8%)
PDR 171 (14.2%) 138 (33.7%) 33 (4.2%)

Cysts
No cyst present 918 (76.4%) 189 (46.1%) 729 (92.2%)
Some form of cyst present 283 (23.6%) 221 (53.9%) 62 (7.8%)

Demographics
Sex

Female 638 (53.1%) 206 (50.2%) 432 (54.6%)
Male 563 (46.9%) 204 (49.8%) 359 (45.4%)

Age (yr),† mean [SD] 69.0 [11.0] 67.3[11.0] 70.0[11.6]
Ethnicity
White 707 (58.9%) 226 (55.1%) 481 (60.8%)
Asian 25 (2.1%) 10 (2.4%) 15 (1.9%)
Black 428 (35.6%) 160 (39.0%) 268 (33.9%)
Other‡ 41 (3.4%) 14 (3.4%) 27 (3.4%)

Single column descriptive statistics presented for the total study sample and stratified by DRIL status. Categorical variables
reported with frequencies and percentage.

†Continuous variables reported with mean and standard deviation (SD).
*Percentages are of n = number of eyes.
‡Ethnicity of other includes multiracial/multicultural, declined, unavailable, American Indian, and Alaskan native. Total of

1201 eyes from 664 patients were used with 537 patients had both eyes imaging.
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imaging performed at a tertiary eye care center between
January 2009 to September 2019. Exclusion criteria
included presence of any retinal dystrophy, macular or
lamellar holes, retinal vein or artery occlusion, wet age-
related macular degeneration, vitreomacular traction
altering the foveal contour, or poor image quality (i.e.,
severe motion artifact, or dim view). Cysts (of any size)
were not excluded from the study. If the cyst disrupted
the layers in such a way that disrupted the transi-
tion line between two zones (i.e., IPL/INL) we consid-
ered this DRIL. However, if the cyst simply displaced
the transition line and all transition lines for each
layer were still discernible, we would not consider that
DRIL. Epiretinal membrane (ERM), because of their
epiretinal nature were not excluded. If the ERM was
associated with significant vitreomacular traction that
altered the foveal contour in a significant way such that
the zones were no longer clearly visible, we excluded the
scan.

An automated query of the electronic health record
was used to generate a list of eligible study subjects.
The list was ordered by medical record number—
a randomly generated eight-digit number unique to
every subject. After inclusion and exclusion criteria
were applied, the first 664 subjects—a total of 5992 B-
scans—were included for analysis. Total of 1201 eyes
were used with 537 patients had both eyes imaging.
We excluded some eyes because of poor image quality.
Moreover, 127 patients had only one eye examined or
imaged. Whenever both eyes of the patients were avail-
able, both eyes were included in the study.

Data Collection

Cirrus HD-OCT images were acquired from the
electronic health record. For this study, DRIL was
defined as any disruption of the inner nuclear layer
(INL), outer plexiform layer (OPL), and the ganglion
cell layer-inner plexiform layer (GCL-IPL) in the
central 1000 um of the fovea, as defined by Sun et al.,
2014.3 Individual OCT scans (high definition, 5-line,
horizontal raster scans) were evaluated for presence of
DRIL by masked graders trained by a retina special-
ist. A third masked grader (retina specialist) resolved
disagreements. Cohen’s kappa was calculated to deter-
mine agreement between graders. Final grading of
scans was used to label the images used for subsequent
CNNmodel development. Images were downloaded to
secure database and deidentified before grading.

Model Development and Testing

To develop the DL-based algorithm, four pre-
existing networks were modified for binary classi-

fication of images: “DRIL” or “no DRIL.” These
networks wereAlexnet,15 GoogLeNet,16 InceptionRes-
NetV2,17 andNasNetLarge.18 Networkswere taught to
detect DRIL by three distinctive steps: network train-
ing, network validation, and external testing.

Graded OCT images were randomly split into three
subsets corresponding to the steps of model devel-
opment. Of all labeled images, 72% were selected
for network training, 18% were selected for network
validation, and the remaining 10% were reserved for
external testing.

During network training, labeled images and DRIL
designation were fed to networks to teach algorithms
to recognize scans of “DRIL” and “no DRIL.” Inter-
spersed within the network training process were
network validation steps. During network validation,
algorithms were given a labeled image with the DRIL
designation initially withheld. The algorithm predicted
the presence of DRIL based on what it had learned
thus far in the training process, and told whether its
determination was correct or incorrect. Based on this
feedback, the networkmodified itself to improve. In the
last step of model development, trained and validated
networks were used to test an external data set. In this
step, images were fed to networks to test their ability
to accurately classify scans by the presence of DRIL.
Network output was compared againstmanual grading
of the same scans.

All CNNs were trained and tested with and without
initial weight freeze. Further, data augmentation19
in conjunction with initial weight freeze was used
for retraining GoogLeNet. Data augmentation used
slightly modified version of images; image rotation
(three images with up to 30° rotation) and y-axis reflec-
tion of images were fed to the networks for training.19
The training of all four modified CNNs was performed
usingMATLAB (MathWorks Inc., Natick,MA,USA)
on a single computer (8-core CPU. Windows 10;
Microsoft, Redmond,WA,USA) with parallel process-
ing using eight workers.

Finally, gradient-weighted class activation mapping
(Grad-CAM) was performed on randomly selected
OCT scans with GoogLeNet. Grad-CAM maps
visually demonstrate where in the image the learned
decision-making is occurring.20

Statistical Analysis

The accuracy and area under the curve (AUC)
from both, internal validation and external testing
steps were obtained for all four CNNs trained with
and without initial weight freeze. GoogLeNet trained
with initial weight freeze and data augmentation was
analyzed for accuracy and AUC for internal validation
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and external testing. A rigorous set of statisti-
cal measures were calculated for all three modified
GoogLeNet algorithms: accuracy, AUC, error rate,
false-positive rate, false-negative rate, specificity, sensi-
tivity, precision, F-1 score and Matthew correlation
coefficient (MCC).21 Results were plotted on receiver
operating characteristic (ROC) curves and presented
on confusion matrices and tables.

Results

A total of 5992 OCT B-scans, from a cohort of
diabetic patients, were manually evaluated for presence
of DRILby trained graders. Cohen’s kappawas greater
than 0.85, indicating near-perfect agreement between
graders.

Graded OCT images were split into three subsets
for development and training of CNNs. A subset of
72% of all graded OCT images (n = 4328) were used
solely for network training. Another subset of 18% of
all graded images (n = 1082) were used for internal
network validation steps. The remaining 10% of images
(n = 600) were used for external testing of networks.

Four different pretrained CNNs—Alexnet,15
GoogLeNet,16 InceptionResNetV2,17 and NasNet-
Large18—were trained with and without initial weight
freeze and tested for their ability to correctly classify
and predict presence of DRIL. Network accuracy and
AUC for internal validation and external testing steps
were compared for each CNN (Table 2). GoogLeNet
and InceptionResNetV2 with initial weights freeze
resulted in high accuracy (85.8% and 88.7%) and AUC
(0.91 and 0.90), respectively.

The typical training time of CNNs depended on
size and complexity. On a single CPU, training with
initial weight freeze using Alexnet was ∼32 minutes,
GoogLeNet was∼54minutes, InceptionResNetV2was
∼406 minutes, and NasNetLarge was ∼2292 minutes.
Based on accuracy, AUC, training time, sensitivity, and

specificity, GoogLeNet was selected for further analy-
sis.

GoogLeNet was retrained using initial weight freeze
and data augmentation. ROC curves of the three
modified GoogLeNet algorithms—(1) without initial
weight freeze, (2) with initial weight freeze, and (3) with
initial weight freeze and data augmentation—were
produced and AUC for each were calculated (Fig. 1).
AUC of ROC curves was highest for GoogLeNet
modified with initial weight freeze and data augmenta-
tion (AUC = 0.93), compared to GoogLeNet modifi-
cations without initial weight freeze (AUC = 0.92) and
with initial weight freeze (AUC = 0.91).

Based on DRIL determinations made by networks,
performance of the three GoogLeNet modified
networks was further analyzed by eight paramet-
ric/statistical tests. Results were presented in confusion
matrices/contingency tables (Fig. 2) and summarized
in Tables 3 and 4.22 External testing of GoogLeNet
modified with initial weight freeze and data augmenta-
tion resulted in high accuracy (88.3%), high specificity
and precision (90.0% and 82.9%, respectively), low
error rate and false-positive rate (11.0% and 10.0%,
respectively), an F1-score of 76.9%, and anMCC score
of 0.7.

Representative examples of CNN’s ability to predict
the presence of DRIL are presented in Figure 3.DRIL-
classified OCT images are accompanied by the proba-
bility of the prediction as determined by the deep-
learning algorithm (Fig. 3).

Last, data from Grad-CAM were presented as a
heatmap showing the focus of learned networks during
decisionmaking (Fig. 4).20 Our CNNwas able to detect
DRIL in diabetic patients, irrespective of DR severity
or the presence of DME.

Discussion

In this article, we developed and trained a deep
learning algorithm for detecting the OCT-imaging

Table 2. Accuracy and AUC of Four CNNs Tested During Internal Validation and External Testing Steps With and
Without Initial Weight Freeze

Without Weight Freeze With Weight Freeze

Internal External Internal External

CNN Name Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

Alexnet 88.7% 0.93 88.0% 0.90 90.5% 0.94 85.8% 0.92
GoogLeNet 81.9% 0.95 79.1% 0.92 89.9% 0.95 85.8% 0.91
InceptionResNetV2 89.5% 0.94 85.8% 0.89 89.2% 0.93 88.7% 0.90
NasNetLarge 88.5% 0.92 86.3% 0.92 88.5% 0.93 86.5% 0.89
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Figure 1. The receiver operating characteristic curves for modified GoogLeNet (a) without initial weight freeze, AUC= 0.92, (b) with initial
weight freeze, AUC = 0.91, and (c) with image data augmentation and initial weight freeze, AUC = 0.93.

biomarker, DRIL in a cohort of diabetic subjects with
and without retinopathy. Using a transfer-learning
protocol, we modified pre-existing neural networks—
originally designed and used for other purposes—to
detect DRIL on OCT.23–25

Initial selection of pretrained CNNs in the present
study was made to show the feasibility of achiev-
ing a clinically meaningful decision-making algorithm
using transfer learning. Use of this method allowed for
efficient training of CNNs with a relatively small data
set and reduced training time.25 In the present article,
retraining required a comparatively small data set (e.g.,
few thousand images) compared with the larger data

set that would be needed for new and un-trained CNNs
(e.g., millions of images).26

Multiclass pretrained CNNs were modified for
binary classification of DRIL (i.e., “yes – DRIL
present,” “no – DRIL not present”). It is important to
note that typically, for binary classification, a relatively
small training data set (when compared to multiclass
CNNs) yields a robust CNN.26,27 Development of the
algorithm was focused on achieving high accuracy
(i.e., true positive and true negative) and minimal
errors (i.e., false positive and false negative) in classi-
fication of images with DRIL. To improve accuracy,
algorithms were further modified by testing with and
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Figure 2. Confusion matrices summarizing results from external testing of modified GoogLeNet (a) without initial weight freeze, (b) with
initial weight freeze, and (c) with image data augmentation and initial weight freeze.

Table 3. Result Parameters for Modified GoogLeNet Algorithms for Classification of Presence of DRIL From
External Testing

Modified GoogLeNet Without Weight Freeze With Weight Freeze
With Weight Freeze and
Data Augmentation

Total images classified 600 600 600
Actual yes 140 140 140
Actual no 460 460 460
True positive 128 71 116
True negative 347 444 414
False positive 113 16 46
False negative 69 69 24

without initial weight freezing. The initial layers weight
freeze is a technique to improve efficiency of the
CNN, especially in transfer learning protocols. When
we retrain a pretrained CNN, the weights between
the neural network layers are updated according to

the new task. For first few layers, freezing the weights
of pretrained neural network from updating help the
CNN to be retrained more quickly, more efficiently,
and with less data required for achieving similar results
without initial weight freeze.28,29 The freezing of initial
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Table 4. Classification Parameters for Modified GoogLeNet Algorithms From External Testing

Parameter Definition *100
Without

Weight Freeze
With Weight

Freeze

With Weight
Freeze and Data
Augmentation

Accuracy TP + TN/Total 79.2% 85.8% 88.3%
Error rate
(misclassification rate)

FP + FN/Total 30.3% 14.2% 11.7%

Sensitivity or recall (true
positive rate)

TP/Actual yes 91.4% 50.0% 82.9%

False positive rate FP/Actual no 24.5% 3.5% 10.0%
Specificity (true negative
rate)

TN/Actual no 75.4% 96.5% 90.0%

Precision TP/Predicted yes 53.11% 81.6% 71.6%
F1-score TP/(TP + 0.5 (FP + FN)) 58.44% 62.6% 76.8%
MCC (Ranges from −1 to
1, with 1 being the best)

TP × TN − FP × FN/�((TP + FP)
(TP + FN) (TN + FP) (TN + FN))

0.4 0.6 0.7

TP, true positive; TN, true negative; FP, false positive; FN, false negative.

weights of pretrained networks results in faster training
and validation. In the present article, an initial 10-layer
weight freeze while training resulted in higher accuracy
and AUC of CNNs.

We compared the four modified CNNs to deter-
mine that GoogLeNet was the best choice for further
algorithm optimization. The selection of GoogLeNet
(for data augmentation training and testing) over other
three models was made by comparing crucial initial
training and testing parameters (with both internal
validation data and external testing data). The train-
ing time of GoogLeNet was significantly lower whereas
the performance parameters were comparable to larger
CNNs (e.g., InceptionResNetV2 and NasNetLarge).

Our modified GoogLeNet was retrained with initial
weight freeze30 and data augmentation,19 as both of
these techniques have been shown to improve CNN
efficiency of image classification. Data augmentation
refers to slight alterations of images (rotation and
inversion) fed to networks to increase the training
sample. The augmented data set had significantly
improved the accuracy, F-1 score, and MCC score
compared with other arrangements of training CNNs
(e.g., without and with initial weight freeze).

Statistical tests were performed to compare effica-
cies of the modified GoogLeNet algorithms. A robust
CNN for detection and classification of diseases has
strong attributes in terms of high accuracy, low
error rates, and high F1 and MCC scores.12,31 The
accuracy was obtained for independent data classi-
fication. However, accuracy alone can be misleading
and biased when assessing binary classification CNN
performance. Accuracy of networks must be inter-

preted in the context of other statistical measures such
as low error rate or misclassification rate as a measure
of the CNN’s ability to avoid wrong classifications.

Other parameters measured were F-1 scores and
MCC. The F-1 score is a harmonic mean of preci-
sion and sensitivity and has been established in the
literature as ametric—alongside accuracy—to evaluate
machine learning. A higher value of F-1 score indicates
a healthy balance between sensitivity and precision.
However, more recently, MCC has been shown to be
a more reliable and robust measure of CNN perfor-
mance compared to both, accuracy and F-1 score.21
Unlike other parameters mentioned in Table 4, the
MCC ranges from −1 to 1 (with −1 being the worst
and 1 being the best).21 CNN accuracy, F-1 score,
and MCC scores improved with initial weight freeze
and data augmentation when compared to the origi-
nal modified pretrained network (e.g., without weight
freeze) for binary classification (Table 4).

Finally, Grad-CAM was used to determine the
learned area of decision making within images of
the neural network. Grad-CAM heat maps demon-
strate that the focus of the learned network is in the
central fovea when determining presence of DRIL.
This finding is expected, and encouraging, because our
parameters for grading DRIL focused on the central
1000 μm of the retina. The Grad-CAM images confirm
that the neural network has been trained to focus
on central retina when identifying DRIL on OCT
scans. All parameters (Table 4) andGrad-CAM images
(Fig. 4) indicate production of an accurate and robust
end-to-end deep learning algorithm for classification of
DRIL in diabetic patients.
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Figure 3. Representative images demonstrating the CNN’s ability to detect the presence of DRIL using themodifiedGoogLeNetwith initial
weight freeze and image data augmentation.

In some of scans, foveal contour was altered by the
ERM without vitreomacular traction. Clinically, these
alterations in the foveal contour by ERM is sometimes
of little to no visual consequence whereas vitreomacu-
lar traction with large disruptions in the foveal contour
is most often associated with blurred vision. We were
able to reliably grade scans with mild/moderate foveal
disruption caused by ERM alone for the presence of
DRIL (such as the example in Fig. 3). Only alter-
ation of the foveal contour by vitreomacular traction
was excluded from the study. Presence of ERM and/or

foveal contour alteration was acceptable, and if all
the layers were visible, the scan was graded and
included. Thuswe did not exclude scans based onERM
alone.

Future directions include developing a deep learn-
ing algorithm for multi-class classification of presence
and severity of DRIL, DR, andDME. To demonstrate
the ability of the deep learning algorithm to classify
DRILwithout confounding effects fromERMor cysts,
we selected an additional cohort of patients with and
without cysts and ERM for analysis (Supplement 1).
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Figure 4. Representative OCT B-scans (left) with corresponding (right) grad-CAM maps of modified GoogLeNet predicted scans. The top
two rows (a, original; b, prediction) are for Yes—DRIL prediction, and the bottom two rows (c, original; d, prediction) are for No—DRIL
predictions.

Conclusion

Development of a DL algorithm for the recognition
of DRIL in patients with DR presents unique oppor-
tunities. DRIL has been associated with worse visual
prognosis, and thus its identification in patients—
perhaps as part of OCT screening programs—may
help identify those who would benefit from early inter-
vention and referral to retina specialists. Furthermore,
its identification at baseline in clinical trials may be
important to help stratify patients based on prognosis.

Manual grading of DRIL is tedious and time consum-
ing, and automation may help allow large-scale studies
to explore associations between development of DRIL
and response to treatment.
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