Optic Nerve Invasion of Uveal Melanoma: Clinical Characteristics and Metastatic Pattern

Jens Lindegaard,1,2 Peter Isager,3,4 Jan Ulrik Prause,1,2 and Steffen Heegaard1

PURPOSE: To determine the frequency of optic nerve invasion in uveal melanoma, to identify clinical factors associated with optic nerve invasion, and to analyze the metastatic pattern and the association with survival.

METHODS: All iris, ciliary body, and choroidal melanomas (N = 2758) examined between 1942 and 2001 at the Eye Pathology Institute, University of Copenhagen, Denmark, and the Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark, were reviewed. Cases with optic nerve invasion were identified and subdivided into prelaminar or laminar invasion and postlaminar invasion. Clinical characteristics were compared with those from 85 cases randomly drawn from all ciliary body and choroidal melanomas without optic nerve invasion from the same period. Survival data were obtained by the Kaplan-Meier method, and the Mantel-Cox log-rank test was used to test differences in survival among the three patient groups.

RESULTS: Optic nerve invasion was found in 157 uveal melanomas (5.7%; 95% confidence interval [CI], 4.8%–6.6%). Frequency varied during the observation period between 5% and 7%. Only choroidal and ciliary body melanomas were found to invade the optic nerve. Eighty-five (54%) were confined to the prelaminar or laminar part, and 72 (46%) were confined to the postlaminar part. Increased intraocular pressure (IOP) and juxtapapillary location were associated with prelaminar or laminar invasion and postlaminar invasion. Age older than 70 years, reduced vision to light perception or worse, nonvisible fundus, and large (>15 mm) tumor size were associated with postlaminar spread. In univariate analysis, patients with postlaminar invasion had significantly higher all-cause and melanoma-related mortality than the other patients.

CONCLUSIONS: Optic nerve invasion in uveal melanoma is found in 1 in 20 patients. Visible juxtapapillary melanoma or loss of light perception should make the clinician suspicious of melanoma with optic nerve invasion, and special awareness of postlaminar spread should be addressed when increased IOP is present independently of decreased visual acuity and tumor location. (Invest Ophthalmol Vis Sci. 2006;47:3268–3275) DOI:10.1167/iovs.05-1435

Uveal melanoma is the most frequent primary intraocular malignant tumor in adults; in Scandinavia, the incidence rate is 5.3 to 8.7 per million person-years.1–4 The tumor has a great propensity to metastasize and to affect the liver in particular.5,5,6 Local spread occurs through the overlying Bruch membrane, giving access to the subretinal space, or toward the orbit (through the sclera, most often along ciliary vessels and nerves). Uveal melanoma infiltrates the optic nerve in only 0.6% to 5% of patients and has been associated with high intraocular pressure, non–spindle cell type, juxtapapillary location, and blindness.3,7–15

The uveal melanoma material examined between 1942 and 2001 at the Eye Pathology Institute, University of Copenhagen, and the Institute of Pathology, Aarhus University Hospital, was reviewed to determine the frequency of optic nerve invasion and to identify clinical factors associated with optic nerve invasion. Furthermore, the metastatic pattern was investigated, and survival analyses were performed to determine the association between survival and optic nerve invasion.

MATERIALS AND METHODS

Patients
At the Eye Pathology Institute, University of Copenhagen, and the Institute of Pathology, Aarhus University Hospital, 2758 eyes enucleated for uveal melanoma between 1942 and 2001 were examined. These eyes constituted all enucleated eyes with uveal melanoma during this period in Denmark. All pathology reports and histology specimens were reviewed, and 157 uveal melanomas with optic nerve invasion were identified. A control group of 85 patients was randomly chosen from the same period from the group of patients with choroidal or ciliary body melanoma without optic nerve invasion because no iris melanomas invaded the optic nerve. In total, 242 patients with uveal melanoma were enrolled in this study.

Ethics
The investigation followed the tenets of the Declaration of Helsinki and was approved by the local scientific ethical committee.

Clinical Characteristics
Reports from admitting hospitals were collected, and the following data on each patient were registered: sex, date of birth, date of histopathologic diagnosis, visual acuity, intraocular pressure (IOP), funduscopic examination, signs of extraocular growth at surgery, ocular surgery, radiotherapy, and orbital recurrence. Visual acuity and intraocular pressure were only included if these recordings were obtained within 2 weeks before enucleation. The tumor was classified as juxtapapillary if the clinician observed during funduscopic examination that the tumor was touching the optic disc. Signs of extraocular growth were graded as positive if the admitting physician had noted this in the surgical report or in the admission note. All pathology reports at the Eye Pathology Institute from 1942 to 2005 were also reviewed to detect orbital recurrences. Furthermore, the Danish Can-
cer Registry (DCR) was studied to detect orbital recurrences not treated with surgery.

Histopathology

All eyes were fixed in buffered formalin, embedded in paraffin, and stained with hematoxylin-eosin for routine histology diagnosis. All specimens were reexamined, and the degree of optic nerve invasion was graded as prelaminar or laminar if tumor cells were present in the optic nerve head or in the lamina cribrosa (Fig. 1, left) and as post-laminar if tumor cells were present in the optic nerve or its sheaths cranial to the lamina cribrosa (Fig. 1, right). Largest basal tumor diameter (LBD) was measured in millimeters, and the tumor was classified as small (≤10 mm), medium (10–15 mm), or large (>15 mm).

Metastatic Pattern and Survival

Registrations at the DCR and the Registry of Cause of Death were studied, and data on date of death, cause of death, and metastases were collected. Furthermore, autopsy reports were collected. Metastases were registered if they had been confirmed by computed tomography (CT), ultrasonography, surgery, or autopsy. Follow-up data for the cohort of patients was updated to November 1, 2004.

All death certificates were reviewed. If autopsy had been performed, the autopsy report was studied to validate the cause of death. If uveal melanoma metastases were found at autopsy, the patient was coded as having died of melanoma. If no autopsy had been performed and uveal melanoma was registered on the death certificate as the cause of death and the patient had no other malignancies according to the DCR, the patient was coded as having died of melanoma. If uveal melanoma or other malignancies were not noted on the death certificate and the patient was registered exclusively in the DCR with uveal melanoma, the patient was coded as having died of a nonmelanoma cause. If a malignancy other than uveal melanoma was registered as the cause of death on the death certificate and the patient was registered with this malignancy in the DCR, the patient was coded as having died of a nonmelanoma cause. Finally, if a malignancy other than uveal melanoma was registered as the cause of death but this malignancy was not registered in the DCR, the patient was coded as having died of melanoma (12 cases coded on the death certificate as skin melanoma, eight cases as gastrointestinal cancer, and one as unspecified malignancy). In eight cases, the cause of death could not be determined.

Statistical Analysis

Relationships between optic nerve invasion and clinical parameters were examined by contingency tables and were further analyzed by Pearson χ² test and Fisher exact test. Mean age and tumor size were analyzed by t test after verification of equal variances by Levene test. The equality of mean of intraocular pressure was tested by the Mann-Whitney U test because a nonnormal distribution was found. Correlations between ordinal parameters and optic nerve invasion were evaluated by Spearman rank correlation test.

Univariate and multivariate binary logistic regression analyses were performed in a forward stepwise manner to evaluate the predictive value of clinical factors for different degrees of optic nerve invasion. Factors with P < 0.20 in the univariate analysis were included in the multivariate analysis.

Survival data were obtained by the Kaplan-Meier method, and the Mantel-Cox log-rank test was used to test differences in survival between...
tween patient groups. Patients were excluded if no follow-up data were obtainable (n = 6). Patients with undetermined causes of death (n = 8) were excluded from the analysis of melanoma-related death. One patient with uveal melanoma diagnosed at autopsy was excluded from the survival analyses. Patients who died of causes unrelated to uveal melanoma were censored at the time of death in the analyses of melanoma-related death. P < 0.05 was regarded as significant.

RESULTS

For a period spanning 60 years (1942–2001), 2758 eyes with uveal melanoma were examined at the Eye Pathology Institute, University of Copenhagen, and the Institute of Pathology, Aarhus University Hospital. Optic nerve invasion was present in 157 cases (5.7%; 95% confidence interval [CI], 4.8–6.6%). The frequency of optic nerve invasion in uveal melanoma varied between 5% and 7% of all diagnosed uveal melanomas during the observation period (Fig. 2). Eighty-five (54%) were confined to the prelaminar or laminar part of the optic nerve, and 72 (46%) were postlaminar (Fig. 3). Patient and tumor characteristics are listed in Table 1.

The mean age of patients with postlaminar optic nerve invasion was 70 years (95% CI, 67–73 years) compared with 63 years in patients with prelaminar or laminar invasion (95% CI, 60–65 years; P < 0.001) and 61 years in controls (95% CI, 58–64 years; P < 0.001).

Visual acuity was significantly reduced in patients with postlaminar invasion compared with the other patient groups (versus prelaminar or laminar, P < 0.001; versus control, P < 0.001; Table 1). Furthermore, patients with prelaminar or laminar invasion had significantly reduced visual acuity compared with controls (P = 0.027; Table 1).

Patients with postlaminar optic nerve invasion had significantly higher IOP (median, 48 mm Hg; 14–70 mm Hg 10th–90th percentiles) compared with other groups (prelaminar or laminar: median, 17 mm Hg; Hg 10th–90th percentiles, 12–50 mm; P < 0.001; control: median, 15 mm Hg; 10th–90th percentiles, 10–38 mm Hg; P < 0.001; Table 1). In addition, the frequency of increased IOP was higher in patients with prelaminar or laminar optic nerve invasion than in the controls (P = 0.003; Table 1).

In 38% (95% CI, 24–52%) of patients with postlaminar invasion, no view of the fundus was obtainable by direct funduscopic examination, primarily because of vitreous hemorrhage or total retinal detachment, compared with only 8% (95% CI, 2–14%; P < 0.001) among controls.

At direct funduscopic examination, the tumor was observed as juxtapapillary in 66% (95% CI, 48–83%) of the cases with postlaminar invasion and in 71% (95% CI, 60–83%) of the cases with prelaminar or laminar invasion (Table 1). In 15% (95% CI, 7–24%) of the controls, the tumor was observed as juxtapapillary.

A significantly higher proportion of tumors with postlaminar invasion (19%) were thought by the surgeon to include extraocular extension compared with those with prelaminar or laminar invasion (5%; P = 0.004). Orbital recurrence was significantly more common among patients with postlaminar invasion (8%; 95% CI, 2–15%) than in controls (1%; 95% CI, 0–3%; P < 0.05).

Tumors with postlaminar optic nerve invasion (mean LBD, 16 mm; 95% CI, 14–17 mm) were significantly larger than the other tumors (prelaminar or laminar: mean LBD, 13 mm; 95% CI, 11–14 mm; P = 0.001; controls: mean LBD, 13 mm; 95% CI, 12–14 mm; P < 0.001).

Before enucleation, three patients with prelaminar or laminar optic nerve invasion were treated with Ru-106 brachytherapy; one of those patients was treated twice. Two patients had been treated with transpupillary thermotherapy (TTT) and one (in 1962) with photocoagulation and external radiation. Radiation was used in an attempt to save the eye because the other one was no longer functional. Before enucleation, three patients with postlaminar optic nerve invasion were treated with Ru-106 brachytherapy and two were treated with TTT. In the

FIGURE 3. Optic nerve invasion of a uveal melanoma in an 80-year-old woman. (A) Funduscopic photograph showing the uveal melanoma with invasion of the optic nerve. Arrows mark the nasal tumor margin. (B) Magnetic resonance image (MRI) from the same patient. White arrows mark intraocular tumor mass, and black arrows mark the optic nerve invaded by the melanoma. (C, D) Photograph and micrograph (hematoxylin and eosin) of the tumor. Retinal detachment (black arrows) above the intraocular tumor mass (Tocular) (*lamina cribrosa, Tnerve tumor mass in the optic nerve).
TABLE 1. Clinical Characteristics in 242 Patients with Uveal Melanoma with and without Optic Nerve Invasion

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Prelaminar/Laminar n (%)</th>
<th>Postlaminar n (%)</th>
<th>No (control) n (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>49 (48)</td>
<td>40 (57)</td>
<td>41 (48)</td>
<td>0.79§; 0.36‡§; 0.22‡‡§</td>
</tr>
<tr>
<td>Female</td>
<td>36 (52)</td>
<td>32 (43)</td>
<td>44 (52)</td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>63 (60–65)</td>
<td>70 (67–73)</td>
<td>61 (58–64)</td>
<td><0.001*‡; <0.001‡; 0.46‡‡</td>
</tr>
<tr>
<td>Visual acuity</td>
<td>12 (20)</td>
<td>1 (2)</td>
<td>18 (24)</td>
<td></td>
</tr>
<tr>
<td>Fundus examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No view</td>
<td>39 (23)</td>
<td>23 (68)</td>
<td>6 (9)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>25</td>
<td>44</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10th–90th percentile</td>
<td>12–50</td>
<td>14–70</td>
<td>10–38</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>8–62</td>
<td>10–79</td>
<td>8–90</td>
<td></td>
</tr>
<tr>
<td>Fundus examination</td>
<td>56 (90)</td>
<td>29 (62)</td>
<td>72 (92)</td>
<td></td>
</tr>
<tr>
<td>No view</td>
<td>6 (10)</td>
<td>18 (38)</td>
<td>6 (8)</td>
<td></td>
</tr>
<tr>
<td>Juxtapapillary location</td>
<td>n = 56</td>
<td>n = 29</td>
<td>n = 72</td>
<td>0.58§; <0.001‡; <0.001‡‡</td>
</tr>
<tr>
<td>No</td>
<td>40 (71)</td>
<td>19 (66)</td>
<td>11 (15)</td>
<td></td>
</tr>
<tr>
<td>Extraocular extension suspected at surgery</td>
<td>n = 85</td>
<td>n = 72</td>
<td>n = 85</td>
<td>0.004*‡; 0.12‡; 0.15‡‡§</td>
</tr>
<tr>
<td>Yes</td>
<td>4 (5)</td>
<td>14 (19)</td>
<td>9 (11)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>81 (95)</td>
<td>58 (81)</td>
<td>76 (89)</td>
<td></td>
</tr>
<tr>
<td>Orbital recurrence</td>
<td>n = 85</td>
<td>n = 72</td>
<td>n = 85</td>
<td>0.090*‡; 0.030‡; 0.56‡‡</td>
</tr>
<tr>
<td>Yes</td>
<td>2 (2)</td>
<td>6 (8)</td>
<td>1 (1)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>83 (98)</td>
<td>66 (92)</td>
<td>84 (99)</td>
<td></td>
</tr>
<tr>
<td>Tumor size (mm)</td>
<td>n = 85</td>
<td>n = 72</td>
<td>n = 85</td>
<td><0.001*‡; <0.001‡; 0.88‡‡</td>
</tr>
<tr>
<td>Small (<10 mm)</td>
<td>37 (44)</td>
<td>14 (19)</td>
<td>32 (38)</td>
<td></td>
</tr>
<tr>
<td>Medium (10–15 mm)</td>
<td>29 (34)</td>
<td>25 (35)</td>
<td>59 (46)</td>
<td></td>
</tr>
<tr>
<td>Large (>15 mm)</td>
<td>19 (22)</td>
<td>33 (46)</td>
<td>14 (16)</td>
<td></td>
</tr>
<tr>
<td>Mean (95% CI)</td>
<td>13 (11–14)</td>
<td>16 (14–17)</td>
<td>13 (12–14)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>3–35</td>
<td>4–40</td>
<td>4–30</td>
<td><0.001*‡; <0.001‡; 0.92‡‡</td>
</tr>
</tbody>
</table>

* P value for prelaminar/laminar optic nerve invasion versus postlaminar invasion.
† P value for postlaminar optic nerve invasion versus controls.
‡ P value for controls (no optic nerve invasion) versus prelaminar/laminar invasion.
§ t t-test (equal variances by Levene test).
¶ Spearman rank correlation test.
Light perception.
** No light perception.
†† Mann-Whitney U test (not normal distribution).

In addition, before enucleation, six (8%) patients with postlaminar optic nerve invasion, nine (11%) patients with prelaminar or laminar invasion, and eight (9%) patients in the control group had undergone various types of ocular surgery (e.g., iridectomy, sclerotomy).

Univariate binary logistic regression analysis showed that intraocular pressure greater than 24 mm Hg and juxtapapillary location were associated with prelaminar or laminar optic nerve invasion (Table 2). The only clinical factor that was significantly associated with prelaminar or laminar optic nerve invasion of uveal melanoma on a multivariate level was juxtapapillary location (Table 2).

Age older than 70 years, visual acuity reduced to light perception (LP) or no light perception (NLP), intraocular pressure greater than 24 mm Hg, juxtapapillary location, nonvisible fundus, and largest basal diameter greater than 15 mm were significantly associated with postlaminar optic nerve invasion by univariate binary logistic regression (Table 2). Intraocular pressure greater than 24 mm Hg was the only factor associated with postlaminar optic nerve invasion by multivariate regression analysis (Table 2).

Metastatic disease was found in 53% of deceased patients with prelaminar or laminar optic nerve invasion and in 63% of patients with postlaminar optic nerve invasion. Metastatic disease developed in 43 (61%) patients in the control group (Table 3). The liver was the most frequent site of metastasis in all three patient groups, followed by the lungs (Table 3). Evidence of metastasis to the central nervous system (CNS), kidney, heart, or adrenal glands was only found in patients with optic nerve invasion. All five patients with postlaminar optic nerve invasion and metastases to the CNS had invasion of tumor cells into the subarachnoidal space. In two of these patients, the tumor was confined to the subarachnoidal space and the optic nerve sheaths. Significantly more autopsies were
TABLE 2. Association of Clinical Factors with Prelaminar/Laminar and Postlaminar Optic Nerve Invasion of Uveal Melanoma, Evaluated by Univariate and Multivariate Binary Logistic Regression

<table>
<thead>
<tr>
<th>Selected Variable</th>
<th>Prelaminar/Laminar Optic Nerve Invasion</th>
<th>Postlaminar Optic Nerve Invasion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univariate Logistic Regression</td>
<td>Multivariate Logistic Regression*† (n = 95)</td>
</tr>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.46 (0.80–2.68)</td>
<td>0.22</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 (reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥50–60</td>
<td>1.01 (0.39–2.63)</td>
<td>0.98</td>
</tr>
<tr>
<td>≥60–70</td>
<td>1.03 (0.44–2.45)</td>
<td>0.94</td>
</tr>
<tr>
<td>≥70–80</td>
<td>1.14 (0.42–3.08)</td>
<td>0.80</td>
</tr>
<tr>
<td>≥80</td>
<td>1.60 (0.38–6.81)</td>
<td>0.53</td>
</tr>
<tr>
<td>Visual acuity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/6–6/12 (reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/18–6/60</td>
<td>0.60 (0.21–1.69)</td>
<td>0.33</td>
</tr>
<tr>
<td>5/60–HM</td>
<td>1.28 (0.48–3.38)</td>
<td>0.63</td>
</tr>
<tr>
<td>LP</td>
<td>1.50 (0.39–5.77)</td>
<td>0.56</td>
</tr>
<tr>
<td>NLP</td>
<td>3.00 (0.94–9.62)</td>
<td>0.07</td>
</tr>
<tr>
<td>Intraocular pressure, mm Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤24 (reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>24–40</td>
<td>9.76 (1.04–91.7)</td>
<td>0.046</td>
</tr>
<tr>
<td>>40</td>
<td>3.66 (1.18–11.4)</td>
<td>0.025</td>
</tr>
<tr>
<td>Fundoscopic examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observable fundus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No view</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juxtapapillary location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (reference)</td>
<td>1.29 (0.39–4.20)</td>
<td>0.68</td>
</tr>
<tr>
<td>Yes</td>
<td>13.9 (5.84–32.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Extraocular extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.42 (0.12–1.41)</td>
<td>0.16</td>
</tr>
<tr>
<td>Tumor size, mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤10 (reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10–15</td>
<td>0.64 (0.33–1.26)</td>
<td>0.20</td>
</tr>
<tr>
<td>>15</td>
<td>1.17 (0.51–2.71)</td>
<td>0.71</td>
</tr>
</tbody>
</table>

* Log likelihood: −46.377.
† Variables with P < 0.20 in the univariate analysis were analyzed in the multivariate analyses.
‡ Log likelihood: −26.977.
§ OR differs slightly from the univariate analysis because fewer patients were included (records for each variable examined by multivariate analysis were not available for all patients in univariate analysis).

performed in patients with prelaminar or laminar invasion than in controls (P = 0.004; Table 3).

Two hundred thirty-five patients (126 men, 109 women) were included in the survival analysis (all-cause mortality). Median follow-up time for all patients (n = 235) was 50 months (range, 1–660 months), and for patients still alive (n = 35) it was 137 months (range, 28–660 months). Median follow-up time was 53 months (range, 3–660 months) for patients with prelaminar or laminar invasion, 23 months (range, 1–495 months) for patients with postlaminar invasion, and 62 months (range, 1–395 months) for patients in the control group.

One-hundred eighteen patients died of uveal melanoma, 74 patients died of other causes, and 35 were still alive at the end of follow-up. In eight patients the cause of death was undetermined. These eight patients were excluded from the analysis of melanoma-related death.

Two hundred twenty-seven patients (120 men, 107 women) were included in the analysis of melanoma-related death. Median follow-up time for all patients (n = 227) was 49 months (range, 1–660 months), and for patients still alive (n = 35) it was 137 months (range, 28–660 months). Median follow-up time was 53 months (range, 3–660 months) for patients with prelaminar or laminar invasion, 23 months (range, 1–495 months) for patients with postlaminar invasion, and 62 months (range, 1–395 months) for patients in the control group.

Significant differences in mortality (all-cause and melanoma-related) were found between patients with postlaminar invasion and controls (all-cause, P = 0.001; melanoma-related, P = 0.017) and patients with prelaminar or laminar invasion (all-cause, P = 0.001; melanoma-related, P = 0.004; Figs. 4A, 4B). No significant differences in mortality were found between patients with prelaminar or laminar invasion and controls (all-cause, P = 0.93; melanoma-related, P = 0.49; Figs. 4A, 4B).

DISCUSSION

Invasion of the optic nerve in uveal melanoma is not as common as it is in retinoblastoma. Invasion is generally limited to...
the area anterior to the lamina cribrosa, though postlaminar invasion is seen in 0.6% to 5% of enucleated eyes with uveal melanoma. An equal number of melanomas with optic nerve invasion was found each 15 of the last 45 years of the observation period, even though an increasing number of uveal melanomas have been diagnosed. The introduction of conservative treatment modalities in the late 1980s might explain this because some tumors invading the optic nerve are not diagnosed histopathologically.

NLP is an uncommon clinical feature in the presence of intraocular melanoma, yet in the present study it was seen in 24% (14/59) of patients with prelaminar or laminar and in 64% (35/55) of patients with postlaminar optic nerve invasion. Lack of light perception as a sign of postlaminar extension of a uveal melanoma is also supported by other case reports and series. The presence of increased IOP might cause nerve conduction loss, but the sole presence of neoplastic cells in the optic nerve might also disturb the functionality of the nerve fibers. Eight patients with optic nerve invasion and normal IOP in the present study had LP or NLP. Neoplastic cells alone thus facilitate the growth of fibrovascular membranes in the trabecular area. Furthermore, the tumor itself may produce angiogenic factors that also increase IOP in the present study was associated with postlaminar optic nerve invasion. After multivariate analysis including tumor size, which is associated with IOP in uveal melanoma, increased IOP was significantly associated with postlaminar invasion of the optic nerve. Increased IOP and chronic vascular occlusive disease may induce optic nerve ischemia and edema, interrupting the integrity of the optic nerve tissue and thus facilitating the growth of malignant tumor cells. Illustrates that blocked aqueous outflow leads to increased IOP and posterior flow in the degenerated vitreous. If the inner limiting membrane has been ruptured by a tumor, detached viable tumor cells can disperse posteriorly through the vitreous, adhere to the optic nerve head, and invade the optic nerve.
ILLUSTRATION 4. All-cause mortality (A) of 151 patients with uveal melanoma with different degrees of optic nerve invasion and 84 patients with uveal melanoma without optic nerve invasion. Melanoma-related mortality (B) of 146 patients with different degrees of optic nerve invasion and 81 patients with uveal melanoma without optic nerve invasion. Significant differences were seen in both all-cause mortality and melanoma-related mortality between patients with postlaminar optic nerve invasion and the two other patient groups. Bars show 95% confidence intervals.

Invasion of the optic nerve was found in 5% of all enucleated eyes with uveal melanoma, and it was associated with poor visual acuity, and increased intraocular pressure as predictive of invasion of the optic nerve in patients with uveal melanoma. invasion of the optic nerve was by seeding through the cerebrospinal fluid because all these tumors had gained access to the subarachnoid space. In metastatic cutaneous melanoma, CNS metastases are detected clinically in 40% of patients and at autopsy in 90% of patients. The high CNS involvement may result from the common embryonic origin of melanocytes and neuronal subpopulations. This neurotropic propensity seems not to be present in uveal melanocytes, but a subpopulation may exist with this characteristic. Uveal melanoma may differ in response to growth-facilitating factors within the CNS and may interact in different ways with the CNS microenvironment. Differences in gene expression between tumors with and without brain metastases have been recognized in other tumors. The same possible difference in gene expression may also affect the propensity for optic nerve invasion of uveal melanoma (neurotropic uveal melanoma).

CONCLUSION

The impact of optic nerve invasion on survival has been demonstrated in univariate analyses showing lower survival rates in patients with optic nerve invasion. However, when optic nerve invasion was included in multivariate analyses, the significance on survival disappeared. In the present study, we found a significant difference in survival between patients with postlaminar optic nerve invasion and the other patient groups. Patients with postlaminar invasion were older than the other patients. This affected all-cause mortality because of the higher incidence of competing causes of death. Melanoma-related mortality might have been greater in patients with postlaminar invasion because the tumors were larger and the frequency of orbital recurrence was greater. Studies have also demonstrated that age affects melanoma-related mortality.

Acknowledgments

The authors thank Torben Steiniche for providing access to the material on uveal melanoma at the Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark.

Previous studies have demonstrated the frequency of CNS metastases in patients with uveal melanoma to be 4% to 15%. Interestingly, all patients in the present study who had metastases to the CNS also had optic nerve invasion. A possible route of dissemination in patients with postlaminar optic nerve invasion was by seeding through the cerebrospinal fluid because all these tumors had gained access to the subarachnoid space. In metastatic cutaneous melanoma, CNS metastases are detected clinically in 40% of patients and at autopsy in 90% of patients. The high CNS involvement may result from the common embryonic origin of melanocytes and neuronal subpopulations. This neurotropic propensity seems not to be present in uveal melanocytes, but a subpopulation may exist with this characteristic. Uveal melanoma may differ in response to growth-facilitating factors within the CNS and may interact in different ways with the CNS microenvironment. Differences in gene expression between tumors with and without brain metastases have been recognized in other tumors.

The same possible difference in gene expression may also affect the propensity for optic nerve invasion of uveal melanoma (neurotropic uveal melanoma).

The impact of optic nerve invasion on survival has been demonstrated in univariate analyses showing lower survival rates in patients with optic nerve invasion. However, when optic nerve invasion was included in multivariate analyses, the significance on survival disappeared. In the present study, we found a significant difference in survival between patients with postlaminar optic nerve invasion and the other patient groups. Patients with postlaminar invasion were older than the other patients. This affected all-cause mortality because of the higher incidence of competing causes of death. Melanoma-related mortality might have been greater in patients with postlaminar invasion because the tumors were larger and the frequency of orbital recurrence was greater. Studies have also demonstrated that age affects melanoma-related mortality.

CONCLUSION

This study identified juxtapapillary tumor location, reduced visual acuity, and increased intraocular pressure as predictive of invasion of the optic nerve in patients with uveal melanoma. Invasion of the optic nerve was found in 5% of all enucleated eyes with uveal melanoma, and it was associated with poor prognosis because of the large tumor size and the high frequency of orbital recurrences.

Acknowledgments

The authors thank Torben Steiniche for providing access to the material on uveal melanoma at the Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark.

Previous studies have demonstrated the frequency of CNS metastases in patients with uveal melanoma to be 4% to 15%. Interestingly, all patients in the present study who had metastases to the CNS also had optic nerve invasion. A possible route of dissemination in patients with postlaminar optic nerve invasion was by seeding through the cerebrospinal fluid because all these tumors had gained access to the subarachnoid space. In metastatic cutaneous melanoma, CNS metastases are detected clinically in 40% of patients and at autopsy in 90% of patients. The high CNS involvement may result from the common embryonic origin of melanocytes and neuronal subpopulations. This neurotropic propensity seems not to be present in uveal melanocytes, but a subpopulation may exist with this characteristic. Uveal melanoma may differ in response to growth-facilitating factors within the CNS and may interact in different ways with the CNS microenvironment. Differences in gene expression between tumors with and without brain metastases have been recognized in other tumors.

The same possible difference in gene expression may also affect the propensity for optic nerve invasion of uveal melanoma (neurotropic uveal melanoma).

The impact of optic nerve invasion on survival has been demonstrated in univariate analyses showing lower survival rates in patients with optic nerve invasion. However, when optic nerve invasion was included in multivariate analyses, the significance on survival disappeared. In the present study, we found a significant difference in survival between patients with postlaminar optic nerve invasion and the other patient groups. Patients with postlaminar invasion were older than the other patients. This affected all-cause mortality because of the higher incidence of competing causes of death. Melanoma-related mortality might have been greater in patients with postlaminar invasion because the tumors were larger and the frequency of orbital recurrence was greater. Studies have also demonstrated that age affects melanoma-related mortality.
References

48. Abdel-Rahman MH, Craig EL, Davidoff FH, Eng C. Expression of vascular endothelial growth factor in uveal melanoma is indepen-