Acuity Development in Infantile Nystagmus

Avery H. Weiss\(^{1,2}\) and John P. Kelly\(^{1,2}\)

PURPOSE. To compare development of acuity in patients with isolated infantile nystagmus and infantile nystagmus associated with a visual sensory defect.

METHODS. Visual acuities in 57 children (1 month to 4 years of age) with infantile nystagmus were assessed by using Teller acuity cards oriented vertically during binocular viewing. Twenty-two had isolated infantile nystagmus, 21 had albinism, 7 had aniridia, and 7 had mild or moderate bilateral optic nerve hypoplasia (BONH). Longitudinal acuity was measured in 40 of these patients (mean 1.8, 2.3, 3.1, and 3.3, measurements per patient group, respectively). The rate of acuity development across the study groups was quantified by linear regression of log acuity versus log age and compared to published normative data.

RESULTS. The rate of acuity development was similar across all groups and paralleled the normative data. The slope of log grating acuity versus log age (+SEM) was normal, 0.73; isolated infantile nystagmus, 0.80 ± 0.11; albinism, 0.80 ± 0.11; aniridia, 0.87 ± 0.16; and BONH, 0.79 ± 0.18. The slopes were not significantly different (ANCOVA, \(F_{1,44} = 0.21, P = 0.95\)). Compared with published binocular normative data, mean acuity adjusted for age was reduced by 1.2 octaves in isolated infantile nystagmus and by 1.7 to 2.5 octaves in nystagmus with associated sensory defect.

CONCLUSIONS. The rate of acuity development in infantile nystagmus is largely independent of the gaze-holding instability or an associated visual sensory defect. Reduction of mean acuity in albinism, aniridia, and BONH is due to the visual sensory defect and exceeds the acuity reduction observed in isolated infantile nystagmus.

Purpose: To compare development of acuity in patients with isolated infantile nystagmus and infantile nystagmus associated with a visual sensory defect. **Method:** Visual acuities in 57 children (1 month to 4 years of age) with infantile nystagmus were assessed by using Teller acuity cards oriented vertically during binocular viewing. Twenty-two had isolated infantile nystagmus, 21 had albinism, 7 had aniridia, and 7 had mild or moderate bilateral optic nerve hypoplasia (BONH). Longitudinal acuity was measured in 40 of these patients (mean 1.8, 2.3, 3.1, and 3.3, measurements per patient group, respectively). The rate of acuity development across the study groups was quantified by linear regression of log acuity versus log age and compared to published normative data. **Results:** The rate of acuity development was similar across all groups and paralleled the normative data. The slope of log grating acuity versus log age (+SEM) was normal, 0.73; isolated infantile nystagmus, 0.80 ± 0.11; albinism, 0.80 ± 0.11; aniridia, 0.87 ± 0.16; and BONH, 0.79 ± 0.18. The slopes were not significantly different (ANCOVA, \(F_{1,44} = 0.21, P = 0.95\)). Compared with published binocular normative data, mean acuity adjusted for age was reduced by 1.2 octaves in isolated infantile nystagmus and by 1.7 to 2.5 octaves in nystagmus with associated sensory defect. **Conclusions:** The rate of acuity development in infantile nystagmus is largely independent of the gaze-holding instability or an associated visual sensory defect. Reduction of mean acuity in albinism, aniridia, and BONH is due to the visual sensory defect and exceeds the acuity reduction observed in isolated infantile nystagmus.

Figure:

- *Invest Ophthalmol Vis Sci.* 2007;48(12):4093–4099 DOI:10.1167/iovs.06-1165

From the \(^1\)Division of Ophthalmology, Roger H. Johnson Clinical Vision Lab, Children's Hospital, Seattle, Washington; and the \(^2\)Division of Ophthalmology, University of Washington, Seattle, Washington.

Supported by the William O. Rogers Trust Fund and by charitable contributions from Anderson and Peter G. La Haye.

Submitted for publication September 28, 2006; revised January 15, March 26, and May 4 and 25, 2007; accepted July 10, 2007.

Disclosure: A.H. Weiss, None; J.P. Kelly, None.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Corresponding author: Avery H. Weiss, Division of Ophthalmology, A-5973, Children's Hospital and Regional Medical Center[b], 4800 Sand Point Way NE, Seattle, WA 98105; avery.weiss@seattlechildrens.org.

Copyright © Association for Research in Vision and Ophthalmology

4093
and a visual sensory disorder may impose multifactorial limitations on visual acuity development. In contrast, the finding that adults with IN have nearly normal acuity suggests that the nystagmus does not limit the development of acuity. The purpose of this study was to quantify and compare the rate of acuity development during early childhood in isolated IN and in IN associated with albinism, aniridia, and BONH.

METHODS

We retrospectively reviewed records of patients with IN syndrome who were seen between November 1991 and December 2005 at Children’s Hospital and Regional Medical Center (Seattle, WA). The research adhered to the tenets of the Declaration of Helsinki, and chart review was approved by the institutional review board (IRB). The inclusion criterion was the appearance of conjugate jerk nystagmus or pendular nystagmus in the first 6 months of life. Evaluation included a comprehensive eye examination before 14 months of age; Teller acuity card (TAC) testing; cycloplegic retinoscopy; assessment of eye alignment, eye movements, and pupillary responses; slit lamp evaluation; and dilated fundus examination by direct and indirect ophthalmoscopy. Patients with IN were categorized into one of the following four groups: (1) isolated IN, or IN associated with (2) aniridia, (3) albinism, or (4) BONH. Of the 57 patients enrolled in the study, 22 had isolated IN, 21 had albinism (16, oculocutaneous albinism; 5, oculalbinism), 7 had aniridia, and 7 had mild to moderate BONH. Exclusion criteria were opacifications of the ocular media, unilateral optic nerve disorders, severe bilateral optic nerve disorders, glaucoma, optic nerve coloboma, and structural and functional retinal disorders other than macular hypoplasia. None of the patients had systemic or neurologic disease except for three patients with optic nerve hypoplasia.

Clinical Examination

Isolated IN was diagnosed on the basis of normal findings in a fundus examination and family history (2 patients) or normal full-field ERG (20 patients). ERG recordings followed ISCEV (International Society for Clinical Electrophysiology of Vision) protocols and were performed with the patient under chloral hydrate sedation (75 mg/kg). Details of the ERG recordings are described elsewhere. Although the full-field ERG is sensitive to cone dysfunction, it does not exclude subclinical abnormalities limited only to the macula.

The diagnosis of albinism was based on clinical detection of macular hypoplasia in association with iris transillumination defects and RPE hypopigmentation. Oculocutaneous albinism was distinguished by the presence of hypopigmentation of skin and hair and autosomal recessive inheritance. Ocular albinism was diagnosed on the basis of normal skin and hair pigmentation, iris transillumination defects, maternal presence of patchy hypopigmentation of the RPE or skin, X-linked inheritance, or genetic testing. Strabismus was noted in 3 of 21 patients. One of the patients had Angleman syndrome. None of the remaining patients had findings consistent with Prader-Willi, Chediak-Higashi, or Hermansky-Pudlak syndromes.

The diagnosis of aniridia was based clinically on the congenital presence of a bilateral annular deficiency of the central iris along with macular hypoplasia. Molecular detection of a Pak6 mutation was documented in two patients. None of the patients had Wilm’s tumor or WAGR (Wilms’ tumor, aniridia, and genitourinary abnormalities with or (4) BONH. Of the 57 patients enrolled in the study, 22 had isolated IN, 21 had albinism (16, oculocutaneous albinism; 5, oculalbinism), 7 had aniridia, and 7 had mild to moderate BONH. Exclusion criteria were opacifications of the ocular media, unilateral optic nerve disorders, severe bilateral optic nerve disorders, glaucoma, optic nerve coloboma, and structural and functional retinal disorders other than macular hypoplasia. None of the patients had systemic or neurologic disease except for three patients with optic nerve hypoplasia.

Visual Acuity

All patients had acuity assessments using the TACs. Testing was conducted according to published methods at age-appropriate viewing distances, and results were compared to published normative data. In brief, the child is presented with a gray card containing a grating on one side that is matched in mean luminance to the gray background. In the standard protocol, the location of a vertical grating is randomly switched to the left or right of central gaze. Often, it was difficult to disambiguate a voluntary gaze shift to the pattern grating from a shift caused by the underlying nystagmus. Therefore, visual acuity was tested with the TACs held vertically so that the gratings were horizontally oriented. Binocular acuity was tested first, and if tolerated, monocular testing was then attempted. All testers had extensive experience with acuity card testing. Approximately 90% of the acuities were measured by one tester (JK). Patients with an eccentric or tilted head posture had visual acuity tested in their preferred head position.

RESULTS

Table 1 summarizes age, number of visits, and refraction, stratified by patient group. The number of longitudinal acuity measurements ranged from two to four for patients with isolated IN, and from two to five for patients with albinism, aniridia, or BONH. Refractive error in Table 1 represents one measurement in spherical equivalent, or (3) hyperopia greater than +5.00 D in spherical equivalent, or (3) astigmatism (in plus cylinder notation) of 1.5 D or more. Patients less than 3 years of age are typically intolerant of glasses. Therefore, we attempted to measure acuity with optical correction when refractive error was more than 3 D of myopia in spherical equivalent or more than 5 D of hyperopia in spherical equivalent. The number of subjects who met the criteria for optical correction was 1 of 22 with isolated IN, 5 of 21 with albinism, 0 of 7 with aniridia, and 5 of 7 with BONH. Of the 11 who met the optical criteria, 5 were tested with correction; the remaining 6 (1 with albinism, 5 with BONH) were intolerant of correction, primarily because of age or developmental delay. One subject with isolated IN was tested without correction on the first visit and with correction on two subsequent visits.

Anisometropia of less than 0.50 D in spherical equivalent was present in 20 of 22 patients with isolated IN, 17 of 21 with albinism, 5 of 7 with aniridia, and 4 of 7 with BONH. Anisometropia between 0.50 and 2.00 D spherical equivalent was present in 2 patients with isolated IN, 4 with albinism, 2 with aniridia, and 2 with BONH. Anisometropia of greater than 2.00 D spherical equivalent was present in 1 patient with BONH. The relationship between uncorrected refractive error and monocular TAC acuity across ages is examined in the Results section.

Forty of 57 infants had two or more acuity assessments. The remaining 17 infants lacked longitudinal acuity assessments because of limited follow-up or missed clinical appointments. Only binocular viewing data were analyzed for developmental trends in acuity.
30° and frequencies ranging from 0.3 to 3 Hz across all patient groups.

Figure 1 shows binocular acuity, both cross-sectional and longitudinal, for all subjects during the first 4 years of life. For comparison, the gray area represents the tolerance limits in 90% of the population with 95% probability (or 90% probability for infants <4 months of age).18 The tolerance limits cover 90% of the population and exclude 5% above the upper limit and 5% below the lower limit. A subset of individuals in each patient group had acuities that overlapped the normative data or fell near the lower 5% tolerance limit. Subjects with isolated IN showed the most overlap with the normative data; 14 (64%) of 22 subjects had at least one acuity measurement within the normal range. In the remaining groups, the number of subjects with at least one acuity measurement falling within the tolerance limit of normal data was 10 (48%) of 21 patients with albinism, 2 (28%) of 7 patients with aniridia, and 1 (14%) of 7 patients BONH.

Four patients in Figure 1 (two with albinism, one with aniridia, and one with BONH) initially showed no orientation to the low-vision card before 5 months of age. These initial data points are arbitrarily plotted at 0.10 cyc/deg but were excluded from subsequent data analysis. Another patient with BONH initially oriented to only the largest grating (0.22 cyc/deg). All these patients showed rapid improvement in acuity after 6 months of age, consistent with delayed visual maturation.25,26

Two patients had hyperopic refractions (right eye and left eye, respectively, +1.75, +1.50 sphere and +2.50, +2.00 × 90,

Table 1. Summary of Patient Data

<table>
<thead>
<tr>
<th>Patients (n)</th>
<th>Visits (n)</th>
<th>Mean visits per patient</th>
<th>Mean age (y) at presentation</th>
<th>Mean age (y) across all visits</th>
<th>Mean spherical refraction right and left eye*</th>
<th>Spherical refraction (SD) right and left eye</th>
<th>Mean astigmatism right and left eye</th>
<th>Mean astigmatism axis</th>
<th>Range of spherical error*</th>
<th>Range of astigmatism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated IN</td>
<td>22</td>
<td>40</td>
<td>1.8</td>
<td>0.69</td>
<td>2.9</td>
<td>0.80</td>
<td>1.38</td>
<td>0.75</td>
<td>88</td>
<td>Plano to +2.50</td>
</tr>
<tr>
<td>Albinism</td>
<td>21</td>
<td>50</td>
<td>2.3</td>
<td>0.48</td>
<td>2.71</td>
<td>0.39</td>
<td>4.77</td>
<td>0.74</td>
<td>100</td>
<td>Plano to +2.25</td>
</tr>
<tr>
<td>Aniridia</td>
<td>7</td>
<td>22</td>
<td>3.1</td>
<td>0.68</td>
<td>2.63</td>
<td>0.70</td>
<td>3.42</td>
<td>0.68</td>
<td>87</td>
<td>Plano to +5.50</td>
</tr>
<tr>
<td>BONH</td>
<td>7</td>
<td>23</td>
<td>3.3</td>
<td>0.49</td>
<td>3.27</td>
<td>0.70</td>
<td>5.02</td>
<td>1.29</td>
<td>69</td>
<td>Plano to +4.00</td>
</tr>
</tbody>
</table>

* Absolute sphere.

![Figure 1](http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/932943/ on 06/18/2018)

FIGURE 1. Development of binocular grating acuity measured with TACs in children with infantile nystagmus. Open squares: cross-sectional data; symbols connected by lines: longitudinal data from individual subjects. Infants lacking visual orientation to the low-vision card are arbitrarily plotted at 0.10 cyc/deg but were excluded from subsequent data analysis. Another patient with BONH initially oriented to only the largest grating (0.22 cyc/deg). All these patients showed rapid improvement in acuity after 6 months of age, consistent with delayed visual maturation.25,26 Two patients had hyperopic refractions (right eye and left eye, respectively, +1.75, +1.50 sphere and +2.50, +2.00 × 90,
3.50, and three had myopic refractions (−6.00, –2.75 × 105, −3.75 +2.75 × 75).

The relationship between acuity development and age was further examined by plotting the patient data and age-matched normal data on a log–log scale (Fig. 2). Both cross-sectional and longitudinal data were used in the analysis. Log acuity increased linearly with log age in all patient groups. Correlation coefficients were highly significant for each group (P < 0.01; F > 19.0). The slope, standard errors of the slope, r² values, and sample size are shown in Table 2. The slopes of the regressions for all patient groups are within one SE of normative data, indicating that the regression lines are nearly parallel. Variation from the regression line was within 1 log unit for

Figure 2. Binocular grating acuity is plotted on a log–log scale to demonstrate the linear relationship between acuity and age. Patients were separated into four diagnostic groups: (A) isolated infantile nystagmus, (B) albinism, (C) aniridia, and (D) BONH. Shaded area: tolerance limits of normal binocular acuity.18 Solid lines: linear regression of the patient data; dotted lines: regression to the normative data. (○) Cross-sectional data; (●) longitudinal data.

Table 2. Slope of Binocular Acuity Development in Log–Log Scale

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Slope</th>
<th>SE</th>
<th>r²</th>
<th>Sample (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth to 4 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAC norms18</td>
<td>0.73</td>
<td>0.04</td>
<td>0.95</td>
<td>21*</td>
</tr>
<tr>
<td>Isolated infantile nystagmus</td>
<td>0.80</td>
<td>0.11</td>
<td>0.57</td>
<td>40</td>
</tr>
<tr>
<td>Albinism</td>
<td>0.80</td>
<td>0.11</td>
<td>0.56</td>
<td>48</td>
</tr>
<tr>
<td>Aniridia</td>
<td>0.87</td>
<td>0.16</td>
<td>0.62</td>
<td>21</td>
</tr>
<tr>
<td>BONH</td>
<td>0.79</td>
<td>0.18</td>
<td>0.49</td>
<td>22</td>
</tr>
<tr>
<td>Birth to 1 year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAC norms18</td>
<td>0.95</td>
<td>0.05</td>
<td>0.98</td>
<td>8*</td>
</tr>
<tr>
<td>Isolated infantile nystagmus</td>
<td>1.26</td>
<td>0.31</td>
<td>0.46</td>
<td>21</td>
</tr>
<tr>
<td>Albinism</td>
<td>0.86</td>
<td>0.26</td>
<td>0.32</td>
<td>25</td>
</tr>
<tr>
<td>Aniridia</td>
<td>1.15</td>
<td>0.39</td>
<td>0.63</td>
<td>7</td>
</tr>
<tr>
<td>BONH</td>
<td>1.45</td>
<td>0.55</td>
<td>0.49</td>
<td>9</td>
</tr>
</tbody>
</table>

*Sample size represents the number of age-specific groups into which 646 subjects in Salomão and Ventura18 were binned and then averaged.
isolated IN and up to 1.5 log units for nystagmus with visual sensory disorders. To analyze the slopes of acuity development further across patient groups, we used analysis of covariance (ANCOVA). The ANCOVA interaction was not statistically significant, indicating that the rates of acuity development with age, represented by the slopes of the regression lines in Table 2, were not different across patient groups and normative data ($F_{1,142} = 0.212; P = 0.931$).

Because acuity is highly dependent on age during the first 4 years, mean acuity in each patient group is influenced by the distribution of ages. Because there is no significant interaction, ANCOVA was also used to test for mean differences in acuity between patient groups using age as a covariate. The ANCOVA main effect was significant ($F_{1,142} = 29.3; P < 0.0001$). Compared with published norms, relative reductions in log acuity (differences in marginal means with the Bonferroni correction) were $-0.351 (P < 0.001)$ for isolated IN, $-0.522 (P < 0.001)$ for albinism, $-0.618 (P < 0.001)$ for aniridia, and $-0.748 (P < 0.001)$ for BONH. The magnitude of acuity reduction is analogous to the offsets of the y-intercepts of the regression lines when the covariates have the same slopes (cf. Keppel12). The average acuity reduction in patients with associated visual sensory disorders was uniformly 1 to 2 octaves, which is larger than test–retest variability in a clinical population.14,43 All subject groups with visual sensory defects showed significant reduction in acuities when compared to those with isolated IN ($P < 0.02$ for each comparison with Bonferroni correction).

To determine whether early visual development was differentially reduced, we similarly analyzed the data from birth to 1 year of age. The bottom half of Table 2 shows the regression data for these subjects. Although the slope of acuity development is uniformly higher in the first year than in the period from birth to 4 years, the variation in slopes overlap each other. The ANCOVA interaction is not significant ($F_{1,4,60} = 0.45; P = 0.77$), indicating the rates of acuity development with age represented by the slopes of the regression lines in Table 2, were not different across groups. The observed power for the interaction was low at 0.149, which is the probability of correctly detecting significantly different slopes at the 0.05 level. The ANCOVA main effect of patient group was significant ($F_{1,4,60} = 5.1; P < 0.01$). Compared with normative data, mean reduction in acuity was 0.49 log unit for isolated IN ($P < 0.01$), 0.62 log unit for albinism ($P < 0.001$), 0.83 log unit for aniridia ($P < 0.001$), and 0.81 log unit for BONH ($P < 0.001$). Furthermore, on average, the five patients with delayed visual maturation subsequently had slopes in acuity development that overlapped the distribution of the remaining patients with nystagmus ($1.05, \pm 0.19$ vs. 0.890 ± 0.34 SEM).

Figure 3 plots the combined TAC data from Summers31 (40 subjects) and Whang et al.44 (64 subjects) for children with albinism compared with the data from the present study. The regression line for our albinism patients nearly matches the average of subjects in current study; dotted regression line: the fitted regression to the combined data from Whang et al. and Summers (open squares). Shaded area: tolerance limits of normal binocular acuity.18

![Image](311x486 to 551x734)

Figure 3. Acutsies in children with albinism are compared to the acuity data from Summers31 and Whang et al.44 Solid regression line: average of subjects in current study; dotted regression line: the fitted regression to the combined data from Whang et al. and Summers (open squares). Shaded area: tolerance limits of normal binocular acuity.18

Acuity versus spherical equivalent refractive error is plotted for 28 measurements from 22 subjects. No correlation was found between the spherical equivalent and relative acuity reduction ($r^2 = 0.07; P = 0.18$). In Figure 4B, 14 measurements from 13 subjects with 0.5 D or more of with-the-rule or against-the-rule astigmatism are plotted for relative reduction in acuity versus astigmatism. Subjects without astigmatism are plotted as filled circles. Two subjects with astigmatism along the 45° axis were removed from the analysis. No correlation was found between astigmatism and relative acuity reduction ($r^2 = 0.01; P = 0.731$). Furthermore, the distribution of acuities in subjects with astigmatism was not significantly different from that in subjects without astigmatism ($P = 0.89; t_{test}$). Only one subject had astigmatism along the 180° axis (Fig. 4B, filled diamond).

DISCUSSION

Despite having continuous eye movements, subjects with IN demonstrated postnatal improvements in visual acuity that parallel improvements shown by age-matched normal subjects. This conclusion is based on the observation that the slopes of acuity development are the same for normal subjects and subjects with isolated IN or IN with associated visual sensory disorders. We propose that, for postnatal acuity development to follow the normal trajectory, acuity development is independent on the slow phase of eye movement. Visual signals are known to exert control on ocular motor behavior, but evidence is also emerging that the ocular motor signals provide feedback to early visual areas that improve visual performance.15,46

In patients with isolated IN, visual acuity was reduced by 1.5 octaves in the first year of life and was reduced on average by 1 octave during the first 4 years of life. This reduction in acuity approximates the average acuity reduction also reported in adults with isolated IN.28,36,47 Given that infants have much
ing that fixation instability increases response variability in the signal-to-noise ratio and sensitivity of the spatial sampling mechanism. Fourth, abnormal motion signals generated by IN could add noise to visual processing, thereby reducing the signal-to-noise ratio and sensitivity of the spatial sampling mechanism.

below acuity, we would expect greater tolerance for retinal image motion, with no impact on acuity. We postulate several mechanisms for the acuity reduction during visual development. First, temporal contrast sensitivity is immature within the same temporal frequencies of the oscillations observed in IN,22,48,49 but may be further reduced in these patients. Second, foveal immaturity imposes not only a spatial limitation due to lower cone photoreceptor density but also a reduction in quantal efficiency due to immature photoreceptor outer and inner segments59 (i.e., lower pigment density and poorer waveguide properties). Third, immaturities in postreceptoral mechanisms from retina to cortex involved in higher level visual processing may be vulnerable to the effects of nystagmus. Fourth, abnormal motion signals generated by IN could add noise to visual processing, thereby reducing the signal-to-noise ratio and sensitivity of the spatial sampling mechanism.

Nystagmus slow-phase velocity and tolerance for retinal image motion is likely to be higher in IN with visual sensory disorders than in isolated IN and normal infant vision.

Our use of horizontally oriented gratings rather than the standard vertically oriented gratings for TAC measurements deserves further discussion. We selected a horizontally oriented grating for two reasons. First, orienting the TACs vertically allowed the tester to disambiguate the patient’s gaze direction from the underlying horizontal nystagmus. Second, horizontal gratings have been shown by investigators to provide an optimal stimulus for a patient with horizontal nystagmus.31,41,57,58 During horizontal nystagmus, the high contrast at the black–white edges of a vertical grating appears smeared. In comparison, contrast along the edges of a horizontal grating remains constant during horizontal nystagmus. As evidence, adults with IN and albinism have impaired sensitivity for vertically oriented stimuli, even for briefly flashed targets in which there is no retinal motion.31,57,59–61

Five (9%) of 57 patients, all less than 6 months of age, did not orient to the low-vision card or responded only to the largest grating (0.22 cyc/deg) but then demonstrated significant acuity improvements after 6 months of age. These visual delays were found only in patients with an associated visual sensory defect and are consistent with reports of delays in visual maturation in the context of albinism or IN.25,26 After the catch-up phase the slopes of acuity improvement did not differ from the remaining 91% of patients. Because acuity in infants with delayed visual maturation overlaps the acuities in infants with Leber’s congenital amaurosis and severe optic nerve hypoplasia,26 repeat TAC measurements to document delayed improvements after 6 months of age are essential.

In summary, acuity development in children with IN, with or without associated visual sensory disorders, parallels normal acuity development. Retinal image motion due to nystagmus alone is associated with an average reduction of one octave in mean acuity, regardless of age. Our data suggest that reduced acuity in subjects with IN with associated visual sensory defect is primarily limited by the macular hypoplasia or optic nerve dysfunction. The relationship between acuity and the velocity profile of the nystagmus deserves further investigation.

References

