Effect of High versus Low Oral Doses of Valacyclovir on Herpes Simplex Virus-1 DNA Shedding into Tears of Latently Infected Rabbits

Manish Kumar,1,2 Herbert E. Kaufman,1,3,4,5 Christian Clement,1 Partha S. Bhattacharjee,1,6 Tashfin S. Huq,6 Emily D. Varnell,1 Hilary W. Thompson,7 and James M. Hill1,3,4,5

PURPOSE. To assess the effect of high doses of valacyclovir (VCV) on HSV-1 DNA shedding into tears of latently infected rabbits.

METHODS. Three oral doses of VCV were tested. Corneas were inoculated with HSV-1, and latent infection was allowed to establish. Starting on postinoculation (PI) day 28, tear swabs were collected once daily for 6 consecutive days before treatment. The rabbits were placed in five balanced groups: group 1 had no treatment, group 2 received placebo, group 3 received 7 mg/kg VCV, group 4 received 70 mg/kg, and group 5 received 140 mg/kg. The treatment was administered by oral gavage twice daily, starting on PI day 36 and continuing for 14 days. The ocular swabs were collected beginning on PI day 40 and continuing for 10 days.

RESULTS. The mean copy number of HSV-1 DNA before treatment was 370 ± 70, 569 ± 273, 368 ± 86, 408 ± 108, and 396 ± 91, and the mean HSV-1 DNA copy number after treatment was 232 ± 183, 564 ± 186, 518 ± 122, 67 ± 63, and 13 ± 7 in groups 1 to 5, respectively.

CONCLUSIONS. There was no observable toxicity in any group. The 70- and 140-mg/kg doses of VCV significantly reduced the HSV-1 DNA copy number, compared with that of the other three groups. A daily dose of 500 mg (~7 mg/kg) VCV in healthy human volunteers did not suppress HSV-1 DNA shedding in tears and saliva. Thus, higher doses of VCV may be necessary to reduce asymptomatic shedding in healthy humans.

HSV-1 is a common cause of loss of vision due to infectious agents in the United States.1–3 We have shown that more than 90% of the human population have HSV-1 DNA in their trigeminal ganglia (TG) and asymptomatically shed DNA into their tears and saliva.5–7 Asymptomatic shedding of HSV DNA is a well-defined phenomenon and is a likely source of disease transmission. HSV-1 is easily transmitted through direct contact with lesions and body fluids from latently infected individuals.1–8 Thus, suppression of asymptomatic shedding is one way to reduce or block transmission.

Recently, we tested the effectiveness of a routinely prescribed dose of valacyclovir (VCV) in reducing the asymptomatic shedding of HSV-1 DNA in normal healthy subjects.7 We found that 500 mg of VCV given once daily did not reduce the asymptomatic shedding of HSV-1 DNA into the tears or saliva. This study was the first in which any dose of VCV was evaluated for the suppression of HSV-1 DNA shedding into tears. A similar dose of VCV has been shown to reduce HSV-2 shedding in immunocompetent subjects with genital herpes.5,9 These data may help explain why antiviral drugs have had much less prophylactic efficacy against HSV-1 lesions, including ocular herpes, than against genital herpes, warranting more studies of treatments to inhibit HSV-1 DNA shedding.

Possible strategies to reduce HSV-1 DNA shedding could be the use of a higher dose, a long-term treatment plan, or both. These strategies can lead to adverse side effects caused by VCV. A VCV dose of 2 g four times a day (8 g/d) has been reported to cause mild adverse effects in immunocompetent subjects.10,11 Lower doses such as 2 to 3 g/d have been used in many studies to treat varicella zoster and HSV-2 subjects.12–14 Quan et al.12 used 1 g of VCV three times a day (3 g/d) and had some success (~50%) in the treatment of postherpetic neuralgia. Our hypothesis for this study is to determine whether the higher doses (either 10 times or 20 times the 7 mg/kg dose) of VCV could suppress asymptomatic shedding of HSV-1 DNA into tears of rabbits with latent HSV-1 infection. We tested three doses of VCV to reduce HSV-1 shedding in tears of latently infected rabbits. This study could result in the determination of a dose of VCV that would suppress asymptomatic HSV-1 DNA shedding in human tears.

MATERIALS AND METHODS

Animals, Cells, Virus, and Drug

All experimental procedures were performed in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and were approved by the LSU Health Sciences Center.

From the Departments of 1Ophthalmology, 2Microbiology, and 3Pharmacology, the 4Neuroscience Center of Excellence, and the 5School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and the 6Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana.

Supported in part by National Institutes of Health Grants EY002622 (HEK), EY006311 (JMH), and EY02377 (LSU Eye Center Core Grant for Vision Research); an unrestricted research grant from LSUHSC (PSB); a Research to Prevent Blindness (RPB) Senior Scientific Investigator Award (JMH); the Louisiana Vaccine Center and the South Louisiana Institute for Infectious Disease Research sponsored by the Louisiana Board of Regents (JMH); an unrestricted departmental grant to the LSU Eye Center from Research to Prevent Blindness, New York, New York; the Louisiana Lions Eye Foundation, New Orleans; and Lions International.

Submitted for publication November 9, 2009; revised January 8, 2010; accepted March 28, 2010.

Disclosure: M. Kumar, None; H.E. Kaufman, None; C. Clement, None; P.S. Bhattacharjee, None; T.S. Huq, None; E.D. Varnell, None; H.W. Thompson, None; J.M. Hill, None

Corresponding author: James M. Hill, LSU Eye Center, 2020 Gravier Street, Suite B, New Orleans, LA 70112; jhill@lsuhsc.edu.

© Association for Research in Vision and Ophthalmology 2010; accepted March 28, 2010.
TABLE 1. Number of HSV-1–Positive Rabbits, Eyes, and Swabs and Mean Copy Number before Treatment, 28 to 33 Days PI

<table>
<thead>
<tr>
<th>Groups</th>
<th>Positive Rabbits</th>
<th>Positive Eyes</th>
<th>Positive Swabs (%)</th>
<th>Mean Copy Number ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>5/5</td>
<td>7/10</td>
<td>12/60 (19)</td>
<td>370 ± 70</td>
</tr>
<tr>
<td>Placebo</td>
<td>5/5</td>
<td>5/10</td>
<td>19/60 (31)</td>
<td>569 ± 237</td>
</tr>
<tr>
<td>7 mg/kg VCV</td>
<td>5/5</td>
<td>7/10</td>
<td>15/60 (25)</td>
<td>368 ± 86</td>
</tr>
<tr>
<td>70 mg/kg VCV</td>
<td>5/5</td>
<td>6/10</td>
<td>15/60 (25)</td>
<td>408 ± 108</td>
</tr>
<tr>
<td>140 mg/kg VCV</td>
<td>5/5</td>
<td>6/10</td>
<td>21/60 (33)</td>
<td>396 ± 91</td>
</tr>
</tbody>
</table>

Statistical Analysis

Standard statistical procedures were used to determine the mean and SEM. Detailed statistics were used to determine the P-values among the five treatment groups for the HSV-1 DNA copy number and the total positives per total swabs. Longitudinal series of observations were analyzed to include intersubject correlation. The data were analyzed by repeated-measures analysis of variance (ANOVA). Our main interest was in the significance of treatments, a between-subject effect. P-values given are those for the F test of the repeated-measures ANOVAs.

RESULTS

The HSV-1 DNA copy number was determined for 25 rabbits, which were divided into five groups according to the number positive for disease, number of positive eye swabs, and mean copy number (Table 1). All rabbits in all groups were positive for disease, number of positive eye swabs, and mean copy number (Table 1).

Effect of Treatments

The mean copy number in the untreated, placebo, 7-mg/kg VCV, 70-mg/kg VCV, and 140-mg/kg VCV groups was 232 ± 183, 564 ± 186, 518 ± 122, 67 ± 63, and 13 ± 7, respectively (Table 2, Fig. 1). The 70- and 140-mg/kg groups had significantly lower copy numbers of HSV-1 DNA shed into tears (P < 0.05) and total positive swabs (P < 0.05). The 70- and 140-mg/kg treatment groups had only 7 positive swabs of 100 total swabs. The other three groups had 19 to 24 positive swabs (Table 2).

DHHSV-1 DNA Quantification

The HSV-1 copy number from the DNA samples was determined by calculating the number of DNA polymerase genes in the sample according to a published method. The DNA was eluted with a DNA elution kit (Gentra PureGene; Qiagen Sciences, Germantown, MD), according to the manufacturer's instructions. The DNA samples were stored in DNA hydration buffer (provided with the kit) at 4°C until processed by real-time PCR. Sterile, unused swabs were processed as a negative control, and other buffer (provided with the kit) at 4°C until processed by real-time PCR. The HSV-1 DNA copy number was determined by the HSV-1 DNA copy number was determined by
Safety and Tolerance

None of the rabbits in any group exhibited signs of adverse effects. The intake of food and water was equal in all groups. No rabbit lost weight. In fact, all five groups gained weight equally during the treatment period and for 1 month after treatment.

DISCUSSION

In our study in 45 healthy humans, we were unable to reduce the HSV-1 DNA shedding in tears and saliva by using 500 mg VCV, either alone or in combination with aspirin. In the present study, we tested two significantly higher concentrations of VCV to determine the effects on HSV-1 DNA shedding in latently infected rabbits. We found a significant decrease in the HSV-1 DNA shedding in tears in rabbits treated with both 70 and 140 mg/kg VCV (Fig. 2, percent positive swabs). A 7-mg/kg dose, which is similar to a 500-mg human dose, did not suppress HSV-1 DNA shedding in latently infected rabbits.

In another study, the VCV dose was selected based on a published report and the U.S. Pharmacopoeia at the time the study started, stating that the effective minimum dose is 500 mg per day. In a study of 69 immunocompetent participants with genital HSV-2, a significant reduction, but no complete suppression, of HSV-2 DNA shedding was found with 500 mg VCV given twice daily. Similarly, a once-daily dose of 500 mg VCV significantly reduced the risk of transmission of genital herpes. Other studies using higher doses of VCV have shown reductions in HSV-2 DNA shedding, but none of these studies demonstrated complete suppression of shedding of viral DNA with VCV or any another antiviral.

VCV, an oral prodrug of acyclovir (ACV), is converted to ACV by first-pass intestinal and/or hepatic metabolism, and at least 90% of the ACV is excreted in the urine. VCV is more efficiently absorbed, and serum concentrations are increased more rapidly than ACV; VCV is effective with less frequent administration. In a clinical setting in which VCV, the L-valyl ester of acyclovir, was orally administered to humans, approximately 54% of the dose was absorbed. Of the absorbed VCV, more than 99% was rapidly converted to acyclovir to give high plasma acyclovir concentrations and low plasma VCV concentrations, which became undetectable at 3 hours after the dose was administered. The peak concentration of acyclovir in serum was 27.1 ± 5.6 μM after three doses of 1 g VCV for 6 days. The C_{max} and AUC are dose dependent and show no proportionality. In one study, after single doses of VCV 100, 250, 500, and 750 mg, or 1 g given to eight healthy volunteers, the mean C_{max} (±SD) was 0.83 (0.14), 2.15 (0.50), 3.28 (0.83), 4.17 (1.14), and 5.65 (2.57) μg/mL, respectively; and the mean AUC (SD) was 2.28 (0.40), 5.76 (0.60), 11.59 (1.79), 14.11 (3.54), and 19.52 (6.04) h·μg/mL, respectively. On the basis of these data, the C_{max} and AUC with a 10-g human dose (which is approximately equal to 140 mg/kg) would be 50.6 μg/mL and 186.01 h·μg/mL, respectively.

Although VCV is regarded as relatively safe, some reports suggest possible neuropsychiatric adverse effects in elderly subjects with neurologic disorders. We observed no visible side effects, toxicity, or mortality in the rabbits treated with VCV doses as high as 140 mg/kg. All the rabbits were healthy, and no ocular abnormalities were observed in these high-dose–treated groups. The high-dose rabbits were observed for 1 month after treatment and had no adverse effects. The doses of 70 and 140 mg/kg are equivalent to approximately 5 and 10 g, respectively, in the average human. To the best of our knowledge, there are no toxicity data available for the 10-g VCV dose. Findings in studies with intraperitoneal 150 or 200 mg/kg/d VCV did not show any toxicity in rabbits and support our data with no adverse effects at a maximum dose of 140 mg/kg. A dose of 2 g VCV four times a day (8 g/d) has been used for the treatment of cytomegalovirus (CMV) infection. However, a potentially fatal thrombotic microangiopathy (TMA)-like syndrome has been reported in some immunocompromised patients receiving high-dose prophylactic VCV therapy (8 g/d) for CMV disease for prolonged periods. The risk of this syndrome appears to be higher in patients with advanced HIV disease. Although the clinical benefits of VCV in some immunocompromised patients may outweigh the risk of TMA, close monitoring for symptoms of TMA is indicated in all immunocompromised patients receiving high-dose VCV.

Thus, a higher dose of VCV could be a better treatment to reduce asymptomatic shedding of HSV-1 DNA with the possibility of very limited or no adverse effects. The suppressive therapy could be important to reduce the transmission of HSV-1 DNA by asymptomatic shedding. VCV treatment is now being tested for suppression of HSV-1, HSV-2, Epstein-Barr virus, and CMV. The suppressive therapy with VCV in HSV-2 subjects has also been shown to reduce the infectiousness of HIV-1 and slow HIV-1 disease progression. We have shown reduction in HSV-1 DNA-positive swabs and HSV-1 DNA copy numbers by the use of 70 and 140 mg/kg of VCV (Table 2, Fig. 1) with treatment for 14 days. These data are important, because they confirm that high doses of VCV can significantly reduce asymptomatic
HSV-1 DNA shedding in an animal model with no observable adverse effects.

References