Supplementary Text

Qualitative assessment was based on the visibility of the filtration opening on the scleral flap and the lake under the scleral flap. Quantitative parameters included the maximum length of the internal fluid-filled cavity seen on the horizontal and vertical scans, maximum height of the internal fluid-filled cavity on the horizontal scans, maximum and minimum bleb wall thickness above the fluid-filled cavity, total bleb height, volumes of the internal fluid-filled cavity, the hyporeflective area enclosed within the bleb wall and the number of microcysts in the bleb wall. The internal fluid-filled cavity was defined as a significantly low-reflective fluid-filled space adjunct to the scleral flap.

The hyporeflective area was delineated by the hyperreflective conjunctiva and Tenon’s capsules in the bleb. The internal fluid-filled cavity and hyporeflective area were segmented manually on a computer screen, and the numbers of pixels within the segmented area were measured as the volume of the internal fluid-filled cavity and hyporeflective area. The maximum and minimum bleb wall thickness was measured above the internal fluid-filled cavity. The total bleb height was defined as the maximum distance between the internal surface of the intrableb fluid filled cavity and the surface of the conjunctival epithelium.
Supplemental figure legend.
Cases of representative normal subject’s photographs, phase retardation and intensity images with PS-OCT, and intensity images with 3-D CAS OCT. Dot-line indicate boundary between conjunctiva and sclera. No abnormal phase retardation was found in conjunctiva of normal subject. S: sclera.
Supplemental figure 2
Cases of representative cystic bleb’s photographs, phase retardation and intensity images with PS-OCT, and intensity images with 3-D CAS OCT. Dot-line indicate boundary between conjunctiva and sclera.