Fine Structure and Significance of Snakelike Chromatin in Conjunctival Epithelial Cells

Erich Knop and Enrico Reale

Purpose. In patients with several disorders of the ocular surface, in wearers of contact lenses, and occasionally in patients considered "normal," the epithelial cells of the bulbar conjunctiva present in their nucleus peculiar alterations of the heterochromatin arrangement that, because of the shape this assumes, are named "snakelike chromatin," or "snakes." To obtain some information about the yet unknown etiology of these snakes, the authors investigated them by electron microscopy.

Methods. Identical conjunctival epithelial cells, collected by impression cytology from long-time contact lens wearers, were first identified by light microscopy and then observed by scanning and transmission electron microscopy.

Results. In scanning electron microscopy, cytoplasmic and nuclear components of air-dried cells were seen collapsed on the snake, which became prominent at the surface, proving its high degree of compactness and showing its axial position and characteristic shape in the elongated nucleus. In transmission electron microscopy, the marginal heterochromatin of the affected nuclei was detached peripherally, forming thin chromatin strands directed toward the main nuclear axis and accumulating there into the snake structure. An important component of the nuclear skeleton, the fibrous lamina, was altered or lost, whereas the nuclear envelope itself did not move and remained intact. Stages of the snake alteration considered as advanced showed an almost completely reversed eu- and heterochromatin distribution, and nucleoli were usually no longer seen. In cases with increased epithelial alteration, there occurred various stages of segmentation of nuclei, induced by an atypical accumulation of cytoplasmic filaments, rolling up around the nucleus and constricting it like a cuff.

Conclusions. The presence of a mechanical stimulus is shown in the ultrastructural findings, and these strongly suggest that it is altering the nuclear and cytoplasmic skeleton, producing snakes and their segmentation. Therefore, snakelike chromatin is suggested as an indicator of mechanical stress on the ocular surface. Invest Ophthalmol Vis Sci. 1994;35:711-719.
Wearers and occasionally in patients considered as ‘normal’. At first, snakes were suspected to be artifacts intrinsic to the method of impression cytology even from the first describer because they were not seen in scrapings of the same patients. Later they have been observed in biopsies, proving their independence on the method. On the other hand, apart from the studies on the conjunctiva where snakes have been described only in conditions associated with squamous metaplasia of the normally cuboidal shaped epithelial cells, central chromatin aggregation in general is a rare and nonphysiologic finding in the tissues of the human body.

Probably because of major technical difficulties in performing an electron microscopic analysis on nuclei with snakelike chromatin (as shown below), its fine structure is still unclear although attempts have been made at its resolution. Hence, the purpose of the current study was to investigate the ultrastructure of these characteristic morphologic nuclear alterations and its eventual significance for the pathogenesis of ocular surface diseases.

METHODS

The epithelial cells obtained by the technique of impression cytology according to a slightly modified procedure were fixed either by immersion in glutaraldehyde (GA, 2.5% in 0.1 M cacodylate buffer, pH 7.4) (Figs. 1, 2) or by air-drying (Fig. 3). For light microscopy (LM), staining was performed according to the Tseng’s method, with hematoxylin, with basic fuchsin and with the Feulgen nuclear reaction. Cells, always adhering on the supporting filter material, were first observed in LM. Areas of special interest were then cut out and further prepared for scanning (SEM) and transmission (TEM) electron microscopy of the identical cells. For SEM, the specimens were dehydrated in graded alcohols, critical-point dried, sputter-coated with gold palladium (15 nm) and observed in a Philips SEM 505. TEM specimens were postfixed for 1 hour in OsO4 (1% in 0.1 M cacodylate buffer, pH 7.2), dehydrated in graded alcohols and embedded in epoxy resin (Epon). Thin sections were cut with a diamond knife, stained with lead citrate and uranyl acetate and observed in a Zeiss EM 10 electron microscope.

To reveal the snakelike structures as known from LM, and to clearly identify them in the sections by TEM, it was necessary to cut the samples, consisting of one cell layer, just a few microns thick, in a plane parallel to the cell itself and passing through the main nuclear axis (Fig. 4). The impression cytologic samples were obtained with informed consent; the tenets of the World Medical Association Declaration of Helsinki were followed; and institutional human experimentation committee approval was granted.

RESULTS

The large cells that had undergone the process of squamous metaplasia had a flat shape and were no longer cuboidal as usually found on the intact bulbar surface. This flat shape was not directly evident in LM (Figs. 1, 3A) but only in SEM (Figs. 2, 3B).

In SEM, after fixation with GA (Fig. 2), the three-dimensional cell shape was well preserved and therefore the nuclei were not seen. In unfixed air-dried cells (Fig. 3B), plasma membrane, cytoplasm, and nuclear envelope (not properly stabilized before the water content of the cell was evaporated) collapsed on the solid nuclear contents, which became prominent at the specimen surface. This procedure allowed to display the shape and size of the nucleus as well as orientation and form of its snakelike chromatin condensations. If present, the snake was detectable as a massive and compact structure even more clearly than in the LM of the same cell (compare Fig. 3A with 3B).

Figure 1 represents one area of special interest showing large cells with altered nuclei in different stages of central chromatin condensation (arrows) suggesting a progressive process finally leading to the snakes. Additionally, in the same photomicrograph,
Snakelike Chromatin in Conjunctival Epithelium

Fig. 2. Scanning electron microscopy. The nuclei of the squamous cells are not visible because of the GA fixation of the cytoplasm. (Magnification X850.)

There are aspects of nuclear segmentation (arrowheads). These nuclei seem to be divided but their condensed chromatin with snakelike shape remains evident. The cells present in this area could be successfully cut for TEM.

By TEM, the nucleus of a normal conjunctival cell (Figs. 5, 6A) showed that, as usually described, the heterochromatin predominated as a thick coat in the nuclear periphery in contact, through the fibrous lamina, with the inner membrane of the nuclear envelope. The uncondensed chromatin (euchromatin) prevailed in the central region of the nucleus.

In the nuclei with snake, even if the atypical chromatin arrangement was moderate (Figs. 7A, 7B), the peripheral heterochromatin was represented by a thin, discontinuous, electron dense layer parallel to the nuclear envelope but still attached to this at a few sites (especially at the poles of the elongated nucleus). Most of the heterochromatin was detached from the nuclear envelope and assembled into the axially located snake, remaining connected with the thin marginal layer by numerous thin chromatin strands (Fig. 7B, which shows by TEM the cell marked “7” in the LM image of Fig. 1). The nucleoli usually were no longer visible but the nuclear envelope was found intact.

In the nucleus of normal conjunctival cells the fibrous lamina was clearly detectable as a narrow (40- to 50-nm) homogeneous zone of moderately electron dense, amorphous material (Fig. 6A). In the nuclei with a snake (Figs. 6B, 6C), the space between the inner nuclear membrane and the peripheral heterochromatin was wider (150 to 300 nm, about three- to five-fold normal width) and contained granular or filamentous material. A narrow electron dense coat occasionally marked the inner nuclear membrane (Figs. 6B, 6C) where probably remnants of the fibrous lamina were present. The peripheral heterochromatin was affected by the disintegration of the fibrous lamina: whole areas of it became progressively loose from the nuclear envelope although sometimes it maintained the shape of the nuclear periphery (Fig. 8B, right).

A typical nucleus with snake in a more advanced stage of condensation is seen in Figures 8A and 8B showing LM and TEM of the same cell. All structures faintly visible in the high power LM (Fig. 8A) can be traced in the TEM (Fig. 8B). In contrast to normal nuclei, in the nucleus with snake the distribution of hetero- and euchromatin is almost reversed. The

Fig. 3. The same cell by light (A) and scanning electron microscopy (SEM (B)). (A) The squamous cell with axially located, highly condensed chromatin in snakelike shape is stained with hematoxylin. (B) Plasma membrane, cytoplasmic, and nuclear components of the air-dried cell are seen collapsed on the snake, which therefore becomes clearly detectable. (bar, 10 µm.)
Areas of special interest were cut out and serial thin sections were performed through the nuclei and parallel to their main axis. It is evident that the nuclear envelope can be seen in cross section (and hence clearly) only in few serial sections.

The nuclear segmentation (Fig. 1, arrowheads) was only seen in nuclei with atypical chromatin condensation and its occurrence was increased in cases with advanced cytologic alteration of the epithelium. A comparison of Figures 9A and 9B displays that, what is appearing as a segmentation or division of the nucleus in LM, is indeed rather a deep circular invagination toward the main nuclear axis. The cytoplasm of the squamous cells was filled with filaments of a diameter from about 5 to 10 nm and only few organelles were remaining. These filaments accumulated toward the nuclear envelope (Fig. 9C) as a filamentous belt, lying in an invagination of the nucleus. The nuclear envelope remained intact even in this area. In the advanced stages of segmentation (Figs. 10A to 10C) the belt filaments were even more aggregated than before and formed a very dense ringlike structure (Figs. 10B, 10C, arrowheads).

These segmentations had various shapes, occurred over short or long distances but, although the segments were sometimes appearing as completely loose nuclear fragments in LM (Figs. 1, 11A), they were never seen completely divided in TEM, but still interconnected by a cordlike structure (Fig. 11B). Serial sections showed that it consisted of a small chromatin bridge hidden inside the filament cuff and masses of filaments, dispersed throughout the cytoplasm, were seen to be continuous with and entering into the filament cuff (Fig. 11C, arrows); the nuclear envelope might appear folded under this influence.

DISCUSSION

Snakelike chromatin condensation is an enigmatic morphologic nuclear alteration of the conjunctival epithelium.

At first glance the conditions inducing a snakelike appearance of the chromatin do not necessarily seem to be closely related to each other because they occur in a variety of pathologic and even in apparently "normal" situations. The cytologic picture of the epithelial surface as revealed by impression cytology, on the other hand, is relatively similar in all cases.
FIGURE 7. A nucleus (labeled "7" in Fig. 1) with a moderate degree of central chromatin condensation on LM (A) and TEM (B). (B) This micrograph displays the alteration of the fibrous lamina, the detachment of the condensed chromatin from the nuclear periphery, and its strands (arrowheads) confluent centrally into the snake. Note the multitude of cytoplasmic filaments in Figures 7 and 8, indicating the squamous metaplastic nature of the cells. (Bar, 1 μm.)

The common factor of all these conditions is an alteration of the tear film stability by direct influence on the tears,17,18 by changes of the underlying epithelial morphology, which is known to affect tear film adherence to a large extent,10-53 or by contact lens wear.24,25 This decrease of tear film stability may induce an increase of mechanical friction between the eyelid (or a contact lens) and the ocular surface, establishing what, in the pathogenesis of morphologic surface alterations, is known as "chronic mechanical irritation."26,27 Conceivably, this occurs in contact lens wear as well1,2 because the eyelid stroke generates a repeating displacement of the contact lens, with consequent friction against the bulbar conjunctival sur-

FIGURE 8. More advanced snake stage with nearly complete displacement of chromatin toward the main nuclear axis: LM (A) and TEM (B). Only few peripheral chromatin strands (small arrowhead) remain, and the inner surface of the nuclear envelope is almost free of condensed chromatin, with the exception of the nuclear poles (large arrowheads). Here the distance between nuclear envelope and snake is small because the displacement of the chromatin is limited. The envelope itself is clearly detectable only in some areas because of the very flat shape of the nucleus (see Fig. 4). (Bar, 1 μm.)
FIGURE 9. Beginning nuclear segmentation in LM (A) and TEM (B, C). As seen in TEM, a thick bundle of filaments accumulates in a deep indentation (arrowhead) on both sides of the nuclear surface. This arrangement suggests that the bundle constricts the nucleus like a ring. A magnification of the right half of the constriction (B, C, arrowhead) shows that the filaments are identical and continuous with the other cytoplasmic filaments. The nuclear envelope is intact. (A) LM and (B) TEM; (C) TEM. (Bar, 1 \(\mu m \)).

It could be assumed that similar conditions may also occur in patients that by routine ophthalmologic examination and tear film tests are considered as normal and do not wear contact lenses. In fact, some may already have minor localized disturbances of their precocular conditions in the form of small areas not unlike "dry spots," there resulting in decreased tear film stability and increased mechanical stress without causing any symptoms. This is indicated by the occurrence of some enlarged or squamous cells and snake-like chromatin in a number of normal subjects, as reported previously\(^{25-27}\) so that the diagnosis and definition of a "normal" conjunctiva is difficult\(^2,31\) and probably dependent on the respective applied tests (or criteria).

As seen in the current study by electron-microscopic investigation of the impression cytologic specimens, one of the first manifestations in the development of the snakes is an alteration of the fibrous lamina. This component of the nuclear skeleton forming a thin sheet at the inner surface of the nuclear envelope\(^{32-33}\) provides the regular adherence of the heterochromatin to the envelope itself.\(^{34-36}\) The to-and-fro movements on the epithelial surface induced by the eyelid stroke and always occurring in an horizontal direction, transversally to the eyelid movement, could induce the elongation of the nucleus in the same direction, the disintegration of the fibrous lamina with con-

FIGURE 10. Advanced stage of segmentation in LM and TEM. The filament cuff (A--C, arrowheads), still not visible by LM (A), appears by TEM (B, C) as a tightly compact structure. High magnification and cross-section clearly display its ringlike arrangement (C). The lateral cell interdigitations (arrows) are well preserved. (A) LM and (B) TEM; (C) TEM. (Bar, 1 \(\mu m \)).
Snakelike Chromatin in Conjunctival Epithelium

FIGURE 11. A highly segmented nucleus by LM and TEM. Close examination of (A) indicates a faint structure in between the two nuclear segments (arrows). TEM of the same nucleus reveals this as a cordlike structure (B, arrows) composed of central chromatin core and encircled by a filament cuff, interconnecting the segments. The circular arrangement of the filaments in the cuff is proven as they are observed as electron dense, tightly packed points in this section crossing the cord along its middle (C). Long filamentous structures prevail in in the periphery (C,120arrows indicate their continuity with other cytoplasmic filaments). Spiral arrangement of hetero- and euchromatin in the bridge suggests that segmentation may occur with a (slightly) different torsion of the segments and hence indicates the presence of a mechanical stimulus. (A) LM and (B) TEM; (C) TEM. (Bar, 1 µm.)

sequent progressively increasing detachment and displacement of the peripheral heterochromatin, and its eventual accumulation along the nucleus major axis. This assumption is supported by the fact that the cells with a snake are on the bulbar surface preferably arranged in longish clusters of horizontal orientation; the individual nuclei share this orientation. A further sign of the alteration of the normal interphase heterochromatin arrangement is given by the disappearance of the nucleolus, suggesting a disassembly of the chromosomes bearing the nucleolus organizing centers.

The multitude of cytoplasmic filaments in the epithelial cells proves that these are squamous metaplastic, what has befor only been assumed by their flattened outer cell shape. For yet unknown reasons, they exhibit an unusual behavior in the cells observed here, and in cases with increased epithelial alteration, they tend to accumulate toward an indentation of the nuclear surface and to form a belt- or cufflike structure around the nucleus. Because intermediate filaments are linked to the nuclear envelope and to the plasma membrane they could, through the proposed rolling and to-and-fro movement, gradually be wound around the elongated nucleus, orthogonally to its main axis, constricting it. If this movement is not evenly pronounced for both segments, a relative torsion might result as strongly suggested by the spiral arrangement of the heterochromatin in the cord joining two nuclear segments in Figure 11C.

In general nuclei can show different forms of morphologic alterations in reaction to external stimuli or to intrinsic processes like the programmed cell death (apoptosis, see below). In contact lens wearers there were most frequently characteristics of degeneration, no clear signs of activation as enlargement of nucleoli or mitosis occurred.

The segmentation observed here is remarkably different from the process of regular cell and nuclear division known as mitosis. The segmentation of the snakes is lacking, for example, of dissolution of the nuclear envelope, condensation of the chromatin into chromosomes and formation of a microtubular mitotic spindle. Whether the snakes or their segmentation are related to any atypical kind of mitosis (as mitosis or endomitosis) is unclear but most unlikely, because amitosis would require microtubuli and complete nuclear division; because endomitosis is characterized by the presence of individual chromosomes; and because cryptoendomitosis would not need segmentation of the nucleus. In addition, any kind of mitosis would be induced by an increased metabolic activity that is most unlikely in squamous cells.

Chromatin condensation and disassembly of the nucleolus occur during apoptosis as well (for reviews, see Refs. 46 and 47). However, typically central chro-
matin condensation as in snakes (except of a part of one segment in nucleus 11) is unknown there. At difference from apoptosis, the cells with snake nuclei, as seen by EM, furthermore do not lose their contact with the neighboring ones (Figs. 1, 10B) and have a smooth surface devoid of buddings or convolutions (Fig. 3B). In addition, apoptic bodies (fragments of apoptotic cells) have never been found inside or among the cells of the conjunctival epithelium prepared with the technique of impression cytology. Accumulations of filaments are not known in apoptosis at all.

Central heterochromatin aggregation in general is a rare finding, reported for example in the terminal differentiation process of chick lens epithelium fibers. Furthermore it is found in cells occurring inside of Aschoff granuloma bodies in rheumatic fever (so called Anitschhow cells) as depicted in textbooks. Their origin is debated (either myocytic or fibroblastic) but clearly not epithelial. Although their nuclear ultrastructure shows a certain similarity to snakelike chromatin the fibrous lamina seems intact there (see Figs. 7, 12, 23 in Ref. 51) and the cytoplasm is completely different. Closer resemblance is seen in the so-called “bar-shaped” chromatin as found in the human oral epithelium. This shares the central heterochromatin arrangement of the nucleus and, in contrast to its name, it occurs in undulating shape as well (see Figs. 1, 5 in Ref. 53); the squamous appearance of the cytoplasm is also similar. These cells may possibly share, as mucosal surface epithelia at a prominent location (frenulum of the lower lip), mechanical influences that in the conjunctival epithelium we showed to be involved in the production of nuclear alterations. These structures, hence, seem to support our hypothesis of the etiology of snakelike chromatin at the ocular surface.

In previous investigations on the snakes of the human bulbar conjunctival epithelium, we suggested that the alterations are due to chronic mechanical irritation, generated by an increased friction. This could produce, as found here, both an alteration of the nuclear skeleton resulting in the formation of snakes and a rearrangement of the cytoskeleton with formation and accumulation of filament bundles that finally may induce a segmentation of the altered nucleus. Hence, our ultrastructural findings strongly suggest that mechanical stimuli play a major role in the etiology of snakes and their segmentation. We would therefore suggest snakelike chromatin as an easy and clearly detectable indicator of mechanical stress on the ocular surface.

Key Words
conjunctiva, epithelium, tear film, dry eye, contact lens, nucleus-ultrastructure, chromatin, cytoskeleton, nuclear skeleton

References

