L450W and Q455K Col8a2 Knock-In Mouse Models of Fuchs Endothelial Corneal Dystrophy Show Distinct Phenotypes and Evidence for Altered Autophagy

Huan Meng,1 Mario Mattbaei,1,2 Narendrakumar Ramanan,3 Rhonda Grebe,1 Shukti Chakravarti,1,4 Caroline L. Speck,1 Martha Kimos,1 Neeraj Vij,5 Charles G. Eberhart,1 and Albert S. Jun1

PURPOSE. We compared the cellular phenotypes and studied the role of autophagy in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD) using two α2 collagen VIII (Col8a2) knock-in mouse models and human FECD tissues.

METHODS. In vivo corneal endothelial cell (CEC) counts and morphology were analyzed by clinical confocal microscopy. Ultrastructural analysis of CECs was performed by transmission electron microscopy. Real-time PCR of Western blotting were performed using total RNA, and protein extracted from mouse CECs and human CECs obtained from FECD and autopsy patients.

RESULTS. Both Col8a2 mouse models exhibited hallmarks of FECD; however, the Col8a2L450W/L450W mice exhibited a milder phenotype compared to the Col8a2Q455K/Q455K mice. Both models exhibited upregulation of the unfolded protein response (UPR), and upregulation of UPR-associated genes and proteins. Real-time PCR of Col8a2L450W/L450W and Col8a2Q455K/Q455K CECs at 40 weeks revealed a 2.1-fold (P < 0.05) and a 5.2-fold (P < 0.01) upregulation of the autophagy marker Dram1, respectively. Real-time PCR of human FECD endothelium revealed a 10.4-fold upregulation of Dram1 (P < 0.0001) compared to autopsy controls.

CONCLUSIONS. The Col8a2L450W/L450W and Col8a2Q455K/Q455K mouse models of FECD showed distinct endothelial cell phenotypes. Dram1 was associated with activation of the UPR and increased autophagy. Overexpression of this gene in mouse and human FECD endothelial cells suggested a role for altered autophagy in this disease. (Invest Ophthalmol Vis Sci. 2013;54:1887–1897) DOI:10.1167/iovs.12-11021

Cornea

Fuchs endothelial corneal dystrophy (FECD) is characterized by bilateral, progressive loss of corneal endothelial cells (CECs) across several decades. FECD affects approximately 5% of the population in the United States, with a higher frequency among Caucasian populations.1 In 2009, FECD accounted for 23% of corneal transplants performed in the United States.2 The definitive treatment for visually significant FECD is endothelial transplantation. No early or nonsurgical therapy to delay or prevent disease progression currently exists to our knowledge.

The hallmark pathologic features of FECD include loss of corneal endothelial cells and the presence of guttae, which are drop-like excrescences of extracellular matrix arising from the underlying Descemet membrane (DM).3 DM is the basement membrane of the CECs, and its primary component is collagen type VIII (COL8), a nonfibrillar, short chain collagen secreted by CECs. In FECD corneas, DM becomes thickened with irregularly deposited wide-spaced COL8 aggregates.4

In the normal cornea, a smooth monolayer of CECs, uniform in size and shape, is present along the DM. CECs form a selective barrier to the aqueous fluid5 with the activity of sodium-potassium ATPase and carbonic anhydrase on the apical surface maintaining physiologic hydration and clarity of the cornea. Arrested in G1 phase of the cell cycle, human CECs have very limited replicative potential in vivo.6 Human and mouse CECs undergo physiologic decline in cell number with aging.7-9 With severe CEC loss in FECD, significant corneal edema causes loss of visual acuity.

Studies of early disease pathogenesis in FECD largely are lacking. Genetic studies have identified multiple gene mutations and loci associated with FECD (Online Mendelian Inheritance in Man #136800, available in the public domain at http://www.ncbi.nlm.nih.gov/omim). These include missense mutations Q455K and L450W in the gene encoding the α2 subunit of collagen VIII (COL8A2) associated with an early-onset form of FECD.10-12 Transmission electron microscopy (TEM) of corneal tissues obtained from FECD patients with unknown genotypes reveal enlarged rough endoplasmic reticulum (RER), suggestive of endoplasmic reticulum (ER) stress caused by the accumulation of misfolded proteins in the ER lumen.13-15 Previous studies in human FECD corneal tissue13 and a Col8a2Q455K/Q455K mutant mouse model of FECD16 show activation of ER stress and the unfolded protein response (UPR).
The UPR can activate several pathways to reduce ER stress and clear misfolded proteins. Proteins can be ubiquitinated and signaled for ER-associated proteasomal degradation, whereas larger protein complexes and organelles undergo bulk degradation via macroautophagy. UPR-associated autophagy has been shown to have a critical role in the pathogenesis of many neurodegenerative disorders involving misfolded proteins, including Alzheimer, Parkinson, and Huntington diseases.

In our study, we sought to characterize the endothelial phenotype of a novel Col8a2L450W knock-in mouse model of FECD, to compare this phenotype to that of a previously reported Col8a2Q455K/Q455K mouse model of FECD, and to study the possible role of autophagy in the pathogenesis of FECD in these two mouse models and human FECD patient specimens.

Materials and Methods

Transgenic Mouse

Animal use was approved by the Johns Hopkins Animal Care and Use Committee, and adhered to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Col8a2L450W/L450W knock-in mice were generated as described previously. In brief, a T-to-G transversion producing a leucine-to-tryptophan substitution at amino acid 456 was introduced into the Col8a2 gene on mouse chromosome 4. This mutation is homologous to the L450W FECD mutation in the human COL8A2 gene. The L450W mutation (underlined) in the Col8a2 targeting vector was produced by overlap extension PCR mutagenesis using overlap primers: 5'-GACAGAAAGGTGAATGCTGGGCTCTCCTGGG-3' and 5'-GACAGAAAGGTGAATGCTGGGCTCTCCTGGG-3'. Chimeric animals were bred with C57/Bl6J mice, and Southern blotting and DNA sequencing were used to confirm the presence of one copy of the Col8a2 gene from L450W heterozygous knock-in mice reveals equal levels of T (WT) and G (L450W mutant) bp's by chromatogram analysis of the Col8a2 gene using the same forward and reverse primers listed above.

Genotyping

DNA was extracted from mouse tails using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA). Genotyping for Col8a2L450W mutants was performed by PCR amplification of the Col8a2 gene using the following primers: forward primer 5'- ATCCAGGGAGACGACGGCCC-3' and reverse primer 5'- AAGTGACGATGACATGAAAGGACTG-3'. PCR products were cleaned using the GeneJet PCR Purification Kit (Fermentas, Glen Burnie, MD). On gel electrophoresis, L450W homozygous mutant animals have a 269 base pair (bp) fragment post BsrI (New England BioLabs, Ipswitch, MA) restriction enzyme digestion versus a 348 bp fragment for WT animals (Fig. 1C). Genotyping of Q455K homozygous mutant samples was performed as described previously.

Clinical Confocal Microscopy, Histology, and TEM

These techniques were performed as described previously. TEM was performed on two mice of each age and genotype.

RNA Extraction and Real-Time PCR of Mouse Endothelial Specimens

DM and endothelial cells were stripped from freshly dissected corneas from both eyes of each mouse using the dissection microscope. A total of 4 biological replicates was used for each age and genotype. Total RNA was extracted using the phenol-chloroform method in combination with the RNeasy Micro Kit (Qiagen). After conversion of total RNA to cDNA using the High Capacity RNA-to-cDNA Kit (Life Technologies, Carlsbad, CA), 12.5 μL cDNA were combined with 25 μL TaqMan PreAmp 2X Master Mix (Life Technologies) and 12.5 μL of a custom designed preamplification pool. The custom preamplification pool was created by a 1:100 dilution of each TaqMan assay (Life Technologies) included in the custom TaqMan Array Plate (see Supplementary Material and Supplementary Table S1, http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.12-11021/-/DCSupplemental). A total of 48 μL of amplified products was mixed with 1104 μL nuclease-free water and 1152 μL of TaqMan Universal Master Mix II (Life Technologies). Then, 20 μL of the reaction mixture were pipetted in each well of a custom 96-well TaqMan Array Plate (Life Technologies). Real-time PCR array plates were run on a StepOne Plus Real-Time PCR System (Life Technologies).

Figure 1. Confirmation of the L450W knock-in mutation. (A) Southern blot analysis of WT and L450W mice post MfeI restriction digestion. (i) WT animals exhibit a single 18.1 kb band, whereas (ii) L450W F1 heterozygous mice have an additional gene-targeted band at 6.1 kb. (B) Sequence analysis of the Col8a2 gene from L450W heterozygous knock-in mice reveals equal levels of T (WT) and G (L450W mutant) bp's by chromatogram signal intensity (black arrow). (C) BsrI restriction digest of a PCR amplified Col8a2 fragment reveals a 348 bp band in WT mice (lanes 1, 2) and a 269 bp band in mice homozygous for the L450W mutation (lanes 3, 4).
Table: Control and Fuchs Dystrophy Patient Information

<table>
<thead>
<tr>
<th>Sample</th>
<th>Age</th>
<th>Sex</th>
<th>Race</th>
<th>Cause of Death</th>
<th>Death to Preservation Time, h</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuchs 1</td>
<td>65</td>
<td>F</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DSAEK</td>
</tr>
<tr>
<td>Fuchs 2</td>
<td>59</td>
<td>F</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DMEK</td>
</tr>
<tr>
<td>Fuchs 3</td>
<td>65</td>
<td>M</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DSAEK</td>
</tr>
<tr>
<td>Fuchs 4</td>
<td>67</td>
<td>F</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DMEK</td>
</tr>
<tr>
<td>Fuchs 5</td>
<td>68</td>
<td>M</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DMEK</td>
</tr>
<tr>
<td>Fuchs 6</td>
<td>64</td>
<td>F</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DSAEK</td>
</tr>
<tr>
<td>Fuchs 7</td>
<td>73</td>
<td>M</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DSAEK</td>
</tr>
<tr>
<td>Fuchs 8</td>
<td>71</td>
<td>M</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DSAEK</td>
</tr>
<tr>
<td>Fuchs 9</td>
<td>75</td>
<td>M</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DSAEK</td>
</tr>
<tr>
<td>Fuchs 10</td>
<td>71</td>
<td>F</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DSAEK</td>
</tr>
<tr>
<td>Fuchs 11</td>
<td>57</td>
<td>M</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DSAEK</td>
</tr>
<tr>
<td>Fuchs 12</td>
<td>91</td>
<td>F</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DSAEK</td>
</tr>
<tr>
<td>Fuchs 13</td>
<td>66</td>
<td>M</td>
<td>Caucasian</td>
<td>Fuchs dystrophy</td>
<td>DSAEK</td>
</tr>
<tr>
<td>Mean age</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSEA, DM stripping automated endothelial keratoplasty; DMEK, DM endothelial keratoplasty.

Please see Supplementary Table S1 (see Supplementary Material and Supplementary Table S1, http://www.iovs.org/lookup/supp/doi:10.1167/iovs.12-11021/DCSupplemental) for full details of TaqMan assays included on the array plate. Expression levels of target genes were normalized to levels of β-actin mRNA expression and analyzed by the delta-delta Ct method (2^[-ΔΔCt]) using StepOne v2.1 and Data Assist software (Life Technologies).

RNA Extraction and Real-Time PCR of Human Endothelial Specimens

Use of human endothelial specimens was approved by the Johns Hopkins Institutional Review Board and adhered to the tenets of the Declaration of Helsinki. Corneal scleral buttons obtained from the eye bank (Tissue Bank International, Baltimore, MD; Indiana Lions EyeBank, Indianapolis, IN; and Lions VisionGift, Portland, OR) or kindly provided by Shannath Merbs, MD, PhD, or whole eyes obtained from the Johns Hopkins Pathology Department Autopsy Service (see Table) were used as controls. DMs and endothelial cells were stripped, and immediately suspended in TRIzol solution (Life Technologies) before RNA extraction. FECD specimens were obtained from patients undergoing surgical intervention (see Table). Written informed consent was obtained from all patients. Post-surgery, half of the removed patient endothelium was collected in a 1.5 mL microcentrifuge tube. Control and FECD samples were phenol-chloroform extracted, and the resulting RNA was cleaned using the RNeasy Micro Kit (Qiagen). Total RNA then was converted to cDNA, and 5 μL of the resulting cDNA product were amplified as described above using a preamplification pool with the following TaqMan assays (Life Technologies) in a 1:100 dilution: DRA1 (Hs00218048_m1), TMEM74 (Hs01864854_s1), MTOR (Hs_00,234,508_m1), and ACTB (Hs99999903_m1). The amplified product was diluted 1:12.5 with nuclease-free water, and 9 μL of the diluted cDNA were mixed with 10 ul TaqMan Universal Master Mix II (Life Technologies) and 1 μL undiluted TaqMan assay (Life Technologies). Real-time PCR was performed using the StepOne Plus Real-Time PCR System (Life Technologies). A total of 3 technical replicates was performed for each sample and gene. Relative expression of DRA1, TMEM74, and MTOR was calculated as above.

Western Blotting

DM and endothelial cells were stripped off freshly dissected corneas and homogenized in Tissue Protein Extract Reagent (Thermo Fisher Scientific, Rockford, IL) supplemented with a 1% protease inhibitor cocktail (Sigma, St. Louis, MO). 1 PhosSTOP Phosphatase Inhibitor Cocktail Tablet (Roche, Mannheim, Germany), and 1% EDTA (Sigma). All protein samples consisted of 2 corneas from the same animal; however, due to low abundance of LCAΑ/B, pooling of 6 corneas from 3 different mice of the same genotype and age was necessary for that particular target. MCF7 cell extracts were used as a positive control for UPR markers, BiP (GRP78), and GADD153 (CHOP). Hela cell extracts were used as a positive control for UPR markers. Samples were centrifuged at 12,000g for 10 minutes at 4°C and the protein concentration of the supernatant was quantified using the Pierce Bicinchoninic Protein Kit (Thermo Fisher Scientific). Equal aliquots of protein were mixed with 4X NuPage loading dye (Life Technologies) with 2-mercaptoethanol (Sigma) and heated for 5 minutes. Samples then were loaded into 4% to 20% Mini-PROTEAN TGX Gel (BioRad, Hercules, CA) and subjected to SDS-PAGE separation.
for 30 minutes at 200 V. Proteins were transferred to a polyvinylidene fluoride (PVDF) membrane and incubated in SuperBlock Blocking Buffer (Thermo Fisher Scientific) for 1 hour. Membranes then were incubated in primary antibodies: BiP (1:500, #3183; Cell Signaling, Danvers, MA), GADD153 (1:1000, sc-793; Santa Cruz Biotechnology), LC3A/B (1:500, #4108; Cell Signaling), ATG12 (1:500, #2011; Cell Signaling), and COL8A2 (1:2000; courtesy of Paul Davis, PhD, Wellington, NZ) diluted in blocking buffer for 1 hour at room temperature. Details regarding secondary antibody, membrane stripping, β-actin loading controls, and densitometry analysis are as described previously.16 Low abundance proteins were detected using SuperSignal West Dura (Thermo Fisher Scientific), and higher abundance proteins were detected using HyGlo Quick Spray (Denville Scientific, Metuchen, NJ).

Statistical Analysis
Statistical significance was determined by unpaired, two-tailed, t-tests using PRISM 4 (GraphPad Software, La Jolla, CA). P values less than 0.05 were considered statistically significant. All bar graphs show mean ± SEM.

RESULTS
Generation and Corneal Endothelial Characterization of a Novel Col8a2 L450W Knock-In Mouse Model of FECD
In addition to our previously reported Col8a2Q455K/Q455K knock-in mouse model of FECD (Figs. 2G–I),16 we report here a novel knock-in mouse harboring a T-to-G transversion

![Figure 2. Assessment of corneal endothelium by clinical confocal microscopy. (A–C) Images from WT mice at 20, 40, and 80 weeks. Dotted outline indicates normal hexagonal shape. (D–F) Images from Col8a2L450W/L450W mice at 20, 40, and 80 weeks. Arrow indicates endothelial gutta. (G–I) Images from Col8a2Q455K/Q455K mice at 20, 40, and 80 weeks. (J) Quantification of cell density with age (weeks). (K) Quantification of percent hexagonal cells with age. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Scale bar: 30 μm.](http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/933253/)
resulting in a leucine-to-tryptophan substitution at amino acid 456 in the triple helical domain of the Col8a2 protein. This mutation is homologous to the COL8A2 L450W mutation observed in genetic studies of FECD.21

Southern blotting and Col8a2 sequence analysis confirmed the correct targeting event, and the presence of the L450W mutation in F1 heterozygotes (Figs. 1A, 1B). Homozygous Col8a2^{L450W/L450W} mice exhibited no abnormalities in breeding, behavior, and development; however, upon clinical examination of their corneas, hallmarks of FECD-reduced endothelial cells, guttae, polymegathism (variations in cell size), and pleomorphism (deviations from normal hexagonal shape) were clearly evident (Figs. 2E, 2F).

Col8a2^{L450W/L450W} Mice Exhibit a Less Severe Corneal Endothelial Phenotype Compared to Col8a2^{Q455K/Q455K} Mice

Imaging of WT CECs by clinical confocal microscopy revealed an orderly array of endothelial cells, uniform in size and shape, at 20, 40, and 80 weeks (Figs. 2A–C). CECs from 20-week-old WT animals had a CEC density of 2296 ± 106 (mean ± SEM) cells/mm² (n = 8). At 40 weeks, CEC density dropped to 2115 ± 157 cells/mm² (n = 12) and, finally, at 80 weeks 1986 ± 128 cells/mm² remained (n = 11). The decline in CEC density in WT animals is consistent with normal endothelial cell aging in mice.9

Col8a2^{L450W/L450W} and Col8a2^{Q455K/Q455K} mice at 20, 40, and 80 weeks showed statistically significant decreases in cell density compared to age-matched WT controls (Fig. 2). The 20-week-old L450W mutant mice exhibited a cell density of 1968 ± 172 cells/mm² (n = 7) or 14% fewer cells than age-matched WT mice. The 40-week-old Col8a2^{L450W/L450W} mice had 1425 ± 165 cells/mm² (n = 13) or 33% fewer cells than age-matched WT mice. The 80-week-old Col8a2^{L450W/L450W} mice had 1209 ± 373 cells/mm² (n = 10) or 39% fewer cells than age-matched WT mice. In comparison with Col8a2^{L450W/L450W} mice, Col8a2^{Q455K/Q455K} mice had an earlier onset of guttae and 13% fewer cells at 20 weeks. The 20-week-old Col8a2^{Q455K/Q455K} mice had 1706 ± 191 cells/mm² (n = 6) or 26% less cells than age-matched WT mice. The 40-week-old Col8a2^{Q455K/Q455K} mice had 1358 ± 202 cells/mm² (n = 15) or 36% fewer cells than age-matched WT mice. The 80-week-old Col8a2^{Q455K/Q455K} mice had 643 ± 258 cells/mm² (n = 11) or 68% fewer cells than age-matched WT mice. There was a profound difference in cell number between Col8a2^{L450W/L450W} and Col8a2^{Q455K/Q455K} mice at 80 weeks, with the former having 47% fewer cells than the latter.

Despite a slowly progressive decline in cell density, guttae were seen rarely in WT endothelial images, and CECs maintained a consistent hexagonal shape (dotted outline in Fig. 2A). In WT mice at 20, 40, and 80 weeks, 65 ± 10%, 58 ± 8%, and 59 ± 9% of the cells, respectively, exhibited the normal hexagonal morphology (Figs. 2A–C, 2K). In contrast, 20 week-old Col8a2^{L450W/L450W} and Col8a2^{Q455K/Q455K} mice had few guttae (Figs. 2D, 2G) and morphologic changes were observed in both mutant mice (Fig. 2K), with 46 ± 10% of the CECs in Col8a2^{L450W/L450W} and 36 ± 7% of Col8a2^{Q455K/Q455K} mice exhibiting the characteristic hexagonal shape. By 40 weeks, more guttae were observed in both mutant knock-in lines (Figs. 2E, 2H), and the number of hexagonal CECs declined to 51 ± 11% and 22 ± 15% in Col8a2^{L450W/L450W} and Col8a2^{Q455K/Q455K} mice, respectively (Fig. 2K). By 80 weeks, 26 ± 12% of the CECs maintained hexagonality in the Col8a2^{L450W/L450W} mice, whereas Col8a2^{Q455K/Q455K} mice had very few hexagonal cells remaining, with just 2 ± 5% of cells maintaining normal size and shape (Fig. 2K). Overall, Col8a2^{Q455K/Q455K} mice had a more severe FEDC-like disease phenotype compared to Col8a2^{L450W/L450W} mice. More guttae were observed in Col8a2^{Q455K/Q455K} mice at each time point, Col8a2^{Q455K/Q455K} mice had approximately 50% fewer endothelial cells at 80 weeks of age, and of the remaining cells at 80 weeks, 92% fewer exhibited the normal hexagonal shape.

![Figure 3](http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/933253/ on 09/23/2017)

Figure 3. Histologic staining reveals guttae in corneas of 40-week Col8a2^{L450W/L450W} and Col8a2^{Q455K/Q455K} mice. (B, C) illustrate DM excrescences (guttae, arrows) characteristic of FEDC.
Histologic Staining Reveals Guttae in Corneas of Col8a2 L450W/L450W and Col8a2 Q455K/Q455K Mice

Overall, corneas of Col8a2 L450W/L450W and Col8a2 Q455K/Q455K mice revealed epithelial and stromal features similar to WT mice (not shown), although fewer endothelial cells were observed consistently in both mutant lines. Furthermore, excrescences of DM (Figs. 3B, 3C) also could be observed in mutants (absent in WT, Fig. 3A), which corresponded to the corneal guttae observed by clinical confocal microscopy.

TEM Reveals Dilated RER in Col8a2 L450W/L450W and Col8a2 Q455K/Q455K Corneal Endothelium

TEM of WT corneas at 20 and 40 weeks revealed abundant mitochondria and RER with compact lumina (Figs. 4A, 4B). In contrast, TEM of corneas from 20- and 40-week-old Col8a2 L450W/L450W mice revealed significantly dilated RER (Figs. 4C, 4D). Similarly, dilated RER was observed in 20- and 40-week-old Col8a2 Q455K/Q455K mice (Figs. 4E, 4F). Abnormal, partially degenerated mitochondria also could be found in 20-week-old Col8a2 Q455K/Q455K mice (Fig. 4E).

Real-Time PCR and Western Blotting Confirms Upregulation of Unfolded Protein Response Markers in Col8a2 L450W/L450W and Col8a2 Q455K/Q455K Corneal Endothelium

Real-time PCR of Col8a2 Hsp5a (gene that codes for BiP, a UPR marker) revealed a 1.4-fold and a 1.5-fold upregulation in 40-week-old Col8a2 L450W/L450W and Col8a2 Q455K/Q455K mice, respectively, compared to WT mice (Fig. 5A). At 80 weeks of age Col8a2 L450W/L450W and Col8a2 Q455K/Q455K mice showed a 1.6-fold and a 1.6-fold upregulation of Hsp5a expression, respectively (Fig. 5A). Gene expression of Ddit3 (gene that codes for UPR marker Gadd153) also was upregulated at 40 weeks, with Col8a2 L450W/L450W and Col8a2 Q455K/Q455K mice exhibiting a 1.9-fold and a 2.1-fold upregulation, respectively (Fig. 5A). Gene expression of Ddit3 (gene that codes for UPR marker Gadd153) also was upregulated at 40 weeks, with Col8a2 L450W/L450W and Col8a2 Q455K/Q455K mice exhibiting a 1.9-fold and a 2.1-fold upregulation, respectively (Fig. 5A). Real-time PCR results were consistent with previously published results reporting upregulation of UPR genes and proteins in Col8a2 Q455K/Q455K mice.16 To confirm further upregulation of UPR in Col8a2 L450W/L450W mice, we quantified BiP and Gadd153 proteins in 40-week-old mutant and WT mice (Figs. 5C-E). Col8a2 L450W/L450W mice

![Figure 5](http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/933253/)
exhibited a 1.7-fold upregulation in BiP and a 7.6-fold upregulation in Gadd153 compared to age-matched WT. Consistent with published results indicating comparable levels of Col8a2 protein in Col8a2 Q455K/Q455K mice compared to WT,16 no significant difference was observed in Col8a2 protein levels in Col8a2 L450W/L450W mice compared to WT.

TEM Reveals Altered Degradation in Col8a2 L450W/L450W and Col8a2 Q455K/Q455K Corneal Endothelium

TEM of a 20-week-old WT mouse revealed double-membrane autophagosomes characteristic of normal autophagic processes (Fig. 6A). Both 20- and 40-week-old WT mice also contained vacuoles with partially degraded organelles fusing to the plasma membrane and releasing their contents into the aqueous humor (Figs. 6B, 6C). In comparison with WT animals, Col8a2 L450W/L450W mice at 20 weeks contained abnormal accumulations of mitochondria and large, electron-lucent vacuoles enclosing partially degraded organelles (Figs. 6D, 6E). The vacuoles increased in size in 40-week-old Col8a2 L450W/L450W mice, and the majority of vacuoles appeared empty, with the occasional partially degraded organelle remaining (Fig. 6F). Fewer dilated ER could be found in 40-week-old Col8a2 L450W/L450W mice, and the majority of the cell volume consisted of empty vacuoles. In comparison, 20- and 40-week-old Col8a2 Q455K/Q455K mice did not exhibit these same electron-lucent vacuoles. The 20-week-old Col8a2 Q455K/Q455K mice exhibited many abnormal mitochondria (Fig. 6G) and persistently dilated RER at 40 weeks of age (Fig. 6H). Large areas of cellular degradation also could be observed in Col8a2 Q455K/Q455K mice, which appeared to have a proteinaceous electron density similar to DM (Fig. 6H). When sufficient areas of the endothelial cell had been degraded, apparent fusion with DM occurred (Fig. 6I). Neighboring endothelial cells extended appendages to cover the degraded remains of the dead endothelial cell, thereby maintaining cell-to-cell contact (Fig. 6I).

Real-Time PCR Reveals Upregulation of Autophagy Inducers Dram1 and Tmem74 in Col8a2 L450W/L450W and Col8a2 Q455K/Q455K Corneal Endothelium

Given that TEM revealed accumulation of large vacuoles with partially degraded organelles and bulk degradation of large portions of endothelial cells, we wanted to investigate autophagy regulation, a key degradation pathway that is triggered by accumulation of misfolded proteins and the unfolded protein response.22,23 In addition to the analysis of the UPR (Fig. 5), we analyzed the expression of 89 autophagy-related genes in endothelium of mutant and WT mice by real-time PCR (see Supplementary Material and Supplementary

Figure 6. TEM reveals altered degradation processes in Col8a2 L450W/L450W and Col8a2 Q455K/Q455K corneal endothelium. (A) 20-week-old WT mouse endothelial cell with normal autophagosomes (white arrows). (B) 20-week-old WT and (C) 40-week-old WT CECs releasing the contents of a vacuole (labeled ‘v’) with partially degraded organelles into the aqueous humor. (D, E) 20-week-old Col8a2 L450W/L450W mice with abnormal accumulation of mitochondria (E) and large electron lucent vacuoles (v) containing partially degraded organelles. (F) 40-week old Col8a2 L450W/L450W mouse with large, mostly empty, electron lucent vacuoles (v). (G) 20-week-old Col8a2 Q455K/Q455K mice with abnormal accumulation of mitochondria. (H) 40-week-old Col8a2 Q455K/Q455K mouse with a large amorphous region where part of the endothelial cell has degraded (black arrow). (I) 40-week-old Col8a2 Q455K/Q455K mouse with the presumed remains of a dead endothelial cell (black arrow). Neighboring cells extend appendages to maintain cell-to-cell contact (white arrow). Scale bars: 500 nm (A–G); 2 µm (H, I).
Col8a2 upregulated in 4). The intersection of the Venn diagrams shows genes that were significant increase in Dram1 fold, respectively (Figs. 7A, 9A, 9B). An 8.9-fold increase of Col8a2 relative to age-matched WT controls (n values. All values are normalized to Col8a2 expression values first followed by regulation compared to age-matched WT mice (Figs. 7A, 7B). The 80-week-old Col8a2 expression (Fig. 7A). At 80 weeks (Fig. 7B), Snca was down-regulated 2.2-fold, and glyceraldehyde-3-phosphate dehydrogenase (Gapdh) was down-regulated 2.2-fold (Fig. 7B).

2.6-fold decrease of interferon alpha 4 (Ifna4) also was observed. The 80-week-old Col8a2 expression (Fig. 7B) was also decreased 2.3-fold. Mechanistic target of rapamycin (Mtor) was down-regulated 5.0-fold, Fas (2.2-fold) (Fig. 7B). Four genes also were down-regulated by greater than 2-fold. Insulin II (Ins2) was down-regulated 2.2-fold, and tumor necrosis factor receptor superfamily, member 6 (Fas) by 2.2-fold (Fig. 7B). Four genes also were down-regulated by greater than 2-fold. Insulin II (Ins2) was down-regulated 2.2-fold, and tumor necrosis factor receptor superfamily, member 6 (Fas) by 2.2-fold (Fig. 7B).

LC3A/B and ATG12-5 Protein Analyses Indicate Altered Autophagy in Col8a2 and Col8a2 Q155K/Q155K Corneal Endothelium

Given the upregulation of autophagy regulatory markers, Dram1 and Tmnem74, by real-time PCR, we wanted to assess further for upregulation of autophagy by testing for proteins associated with autophagosome formation, LC3 and Atg12 in 40-week-old mutant endothelium. Western blotting using anti-LC3A/B antibody revealed upregulation of LC3-1 in mutant endothelium, but no LC3-I bands could be detected (Fig. 8A). Western blotting using anti-Atg12 antibody revealed a decreased abundance of conjugated Atg12-Atg5 in mutant endothelium compared to age-matched controls (Fig. 8B).

Real-Time PCR of Human FECD Endothelium Reveals a 10.4-Fold Upregulation of DRAM1 Compared to Autopsy Controls

Gene expression for increased macroautophagy by TEM, and gene expression changes in Dram1 and Tmnem74 in mouse CEQs, we wanted to determine whether either of these autophagy-associated genes was upregulated in CEQs from human FECD patients. A total of 14 CEQ samples was obtained.

Table S1, http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.12-11021/-/DCSupplemental). We identified genes that exhibited at least a statistically significant 2-fold up- or down-regulation compared to age-matched WT mice. At 40 weeks, analysis of Col8a2 and Col8a2 Q155K/Q155K CECs showed a 2.1-fold increase in expression of DNA-damage regulated autophagy modulator (Dram1) and 2.1-fold increase in expression of transmembrane protein 74 (Tmnem74) compared to age-matched WT CECs (Figs. 7A, 7B). In the same mice, we also observed a 7.7-fold decrease in insulin II (Ins2), a 3.1-fold decrease in phosphoinositide-3-kinase, catalytic subunit gamma (Pik3cg), and a 3.0-fold decrease in alpha-synuclein (Snca) expression (Fig. 7A). At 80 weeks (Fig. 7B), Snca exhibited 5.2-fold lower expression than age-matched WT; however, Dram1, Tmnem74, Ins2, and Pik3cg no longer exhibited statistically significant differences in expression. At 40 weeks, CECs from Col8a2 Q155K/Q155K mice revealed a significant increase in Dram1 and Tmnem74 by 5.2-fold and 3.2-fold, respectively (Figs. 7A, 7B). An 8.9-fold increase of phosphoinositide-3-kinase, regulatory subunit 4 (Pik3r4) and a
from autopsy patients or research corneas obtained from the eye bank (see Table). Of the endothelial cell samples 13 were obtained from patients undergoing endothelial transplant due to FECD with unknown genotypes. We extracted whole RNA from each sample, and analyzed DRAM1, TMEM74, and MTOR by real-time PCR. Analysis revealed a 10.4-fold upregulation ($P < 0.0001$) of DRAM1 in FECD samples compared to control samples (Fig. 9C). However, we found no statistically significant differences in TMEM74 (Fig. 9D) or MTOR expression (not shown).

DISCUSSION

We report the second mouse model of FECD produced by knock-in of the L450W Col8a2 mutation, which is an allelic variant of the Q455K mutation reported previously by our group.16 Interestingly, L450W mutant mice show a milder clinical phenotype on confocal microscopy compared to Q455K mice, although this relative preservation of cells and morphology is associated with a seemingly more “severe” vacuolization on TEM. Available clinical information is insufficient to allow detailed comparison of phenotypic severity between human L450W and Q455K patients. Liskova et al. describe a single L450W pedigree, with one patient who underwent penetrating keratoplasty at age 75, and a second who suffered edema in the “mid-20s” and subsequently underwent bilateral keratoplasty in the 50s but had symptoms from edema in the 20s.10 Thus, the available information suggests that in humans the phenotypes associated with the L450W and Q455K mutations are more similar than observed in mice. Such variation in humans may be more difficult to discern for multiple reasons, including heterogeneity of genetic background/modifier genes as well as the longer time of disease progression. These issues underscore the potential value of using mouse models to define genotype/phenotype relationships in FECD.

Similar to the previously reported Q455K knock-in mouse line,16 we provided evidence for ER stress and UPR in L450W knock-in mouse corneal endothelium, including marked enlargement of ER and upregulation of UPR markers. Such ER expansion occurred within the cell to lower the concentration of toxic unfolded proteins and reestablish homeostasis.22 The precise identity of toxic unfolded proteins within the dilated ER is difficult to determine. Western blots of endothelium from both mutant lines showed comparable levels of trimeric Col8a2 with WT, and no increased amounts of monomeric or partial length Col8a2 peptides were observed. However, it remains possible that the accumulated unfolded proteins are comprised of Col8a2 peptide fragments not containing the epitopes recognized by the antibody used. Alternatively, a relatively small subpopulation of defective Col8a2 protein could alter global protein processing/trafficking within the ER resulting in nonspecific protein accumula-

FIGURE 9. Real-time PCR of mouse and human endothelium reveals upregulation of autophagy regulators. (A) Real-time PCR reveals upregulation of Dram1 in Col8a2L450W/L450W and Col8a2Q455K/Q455K mice at 40 weeks of age. At 80 weeks of age, Dram1 is upregulated significantly only in Col8a2Q455K/Q455K mice. (B) Tmem74 real-time PCR reveals upregulation in both mutant mice at 40 weeks; however, only 80-week-old Col8a2Q455K/Q455K mice exhibit upregulation compared to age-matched WT. Real-time PCR of human endothelium reveals upregulation of DRAM1 (C) and no difference in TMEM74 (D) in FECD samples compared to normal controls. *$P < 0.05$, **$P < 0.01$, ***$P < 0.001$.

Downloaded From: http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/933253/ on 09/23/2017
Elegant experiments by Bernales et al. indicate that cells can respond further to extreme levels of toxic unfolded proteins within abnormal regions of ER by sequestering these areas inside large membrane-bound vacuoles. This process involves an organelle-specific form of macroautophagy termed "ER-phagy." It is tempting to speculate that the expanded ER and large membrane-containing vacuoles represent ER-phagy in the corneal endothelium of L450W mice, which confers increased survival compared to Q455K endothelium lacking these features. Thus, although both mutations occur in close proximity within the protein and appear grossly to induce similar ER stress/UPR activation, we suggested that they could potentially produce allele-specific biochemical defects and downstream cell survival responses. This possibility is supported by our previous studies of these two mutations using circular dichroism spectroscopy and transfection in a cell culture model of FECD.

Macroautophagy is a well-studied cellular pathway that degrades bulk protein aggregates and organelles. Evidence of ER stress and large, organelle-containing vacuoles in L450W corneal endothelium prompted us to investigate markers of autophagy in our two mouse lines and human FECD patients. Custom autophagy gene expression arrays showed upregulation of Dram1 and Tmem74 in L450W and Q455K endothelium at 40 weeks. In addition, Dram1 was upregulated in endothelium from 80-week Q455K mice and human FECD patients.

Damage-regulated autophagy modulator (DRAM) is required for p53-mediated induction of autophagy and apoptosis. Interestingly, Dram1 upregulation in our study remained elevated in 80-week mice only for the more severely affected Q455K line, which presumably had higher levels of endothelial cell apoptosis. Our findings supported the previous work by Azizi et al. who showed that p53-mediated apoptosis has an important role in FECD. Furthermore, these results suggested that, in addition to established oxidative stress pathways, autophagy and DRAM1 contribute to p53-mediated apoptosis of corneal endothelium in Q455K mice and human FECD patients.

The role of transmembrane protein (Tmem) 74 is less clear as its expression was not elevated in 80-week-old L450W mice or FECD patients. Available reports of this protein are limited and indicate that it functions as an autophagy inducer. Further study may reveal alternative activities for Tmem74, which may explain the apparent inconsistency we observed between its expression and Dram1 in our mouse models and human patients.

Although we observed increased levels of LC3-II in the corneal endothelium of both mouse models, we did not observe upregulation of LC3-II, a common marker of autophagy. Given the limited amount of protein that we were able to extract from mouse corneas and the technical demands of isolating intact LC3-II, we may not have obtained sufficient protein to detect lower abundance LC3-II. In addition, cells of neuronal origin, including corneal endothelium, may show low ratio of LC3-II to LC3-I due to rapid LC3-II degradation.

The finding of decreased ATG12-5 and abnormal accumulations of mitochondria in corneal endothelium from both mutant mouse lines is comparable to the results of Luo et al., who noted decreased ATG12-5, increased mitochondria, and decreased DJ-1 protein in cardiomyocytes exposed to tert-butyl hydroperoxide (tBHP)-induced oxidative stress. These investigators concluded that defects in autophagy resulted in decreased organelle turnover leading to mitochondrial accumulation. Interestingly, Bitar et al. noted decreased DJ-1 and other Nrf2-related proteins in tBHP exposed corneal endothelium from FECD patients. Thus, it is possible that altered autophagy in FECD patient endothelium also contributes to the observed decrease in DJ-1.

Our findings confirmed the sufficiency of the L450W and Q455K COL8A2 mutations to cause early-onset FECD in humans, and they further underscored the potential to model corneal endothelial diseases accurately in mice. This approach indicated a role for altered autophagy at an earlier clinical stage than has been studied in humans. The use of an in vivo model associated with a rare and phenotypically distinct form of FECD may limit its applicability to more common forms of the disease. However, our confirmation of elevated DRAM1 levels in human later onset FECD endothelium with unknown genotypes suggested a pathogenic interaction between autophagy, oxidative stress, and p53 activation, as well as possible therapeutic approaches related to these processes.

The development of additional mouse models of FECD using other causative mutations should provide information regarding early cellular pathogenesis that is impractical to obtain in human patients, and that may be valuable for the development and testing of potential nonsurgical treatments for this disease.

Acknowledgments

The authors thank Barbara Crain, MD, PhD, and the Johns Hopkins Pathology Autopsy Service for the autopsy eyes used in this study; Paul Davis, MD, David Ginty, PhD, and Jeremy Nathans, MD, PhD, for technical assistance; and Stanley Friedler, MD, Diane Kemker, Jean Mattison, and Lee Silverman for assistance with funding support.

References

