Comments on the Receipt of the Proctor Medal

Dr. Neufeld, Officers and Members of the Association, Ladies and Gentlemen: I am most grateful to the Trustees of ARVO for having invited me to deliver the Proctor Lecture. I recognize that there are many among our membership who are worthy of such recognition, and I can only accept this honor as their representative. Some 10 years ago, when I had the privilege of representing the Anatomy and Pathology Section on the Board of Trustees, there happened to be a review of the guidelines for the Proctor and Friedenwald Awards by a Committee headed by Dr. Abraham Spector. I learned that Dr. Proctor had devoted his life to studying the important blinding disease trachoma, and appreciated and vigorously promoted basic laboratory research on all aspects of the visual system as a foundation for understanding clinical problems. However, at the time of my entry into vision research, any potential contributions to understanding clinical problems were totally absent from my consciousness.

As in most human endeavors, chance played a large role in my career path. Being interested in mechanisms of cell differentiation, I undertook doctoral research in biochemical embryology with Lester Barth, but by the time I concluded my thesis, I had come to appreciate that our knowledge of genes was too primitive to approach the important questions about gene activation and inactivation. This was just pre-Watson-Crick. I then went to the laboratory of Daniel Mazia to receive a two-year exposure to the thinking of a leader in cell biology, and while there were many among our membership who are worthy of such recognition, and I can only accept this honor as their representative. Some 10 years ago, when I had the privilege of representing the Anatomy and Pathology Section on the Board of Trustees, there happened to be a review of the guidelines for the Proctor and Friedenwald Awards by a Committee headed by Dr. Abraham Spector. I learned that Dr. Proctor had devoted his life to studying the important blinding disease trachoma, and appreciated and vigorously promoted basic laboratory research on all aspects of the visual system as a foundation for understanding clinical problems. However, at the time of my entry into vision research, any potential contributions to understanding clinical problems were totally absent from my consciousness.

As in most human endeavors, chance played a large role in my career path. Being interested in mechanisms of cell differentiation, I undertook doctoral research in biochemical embryology with Lester Barth, but by the time I concluded my thesis, I had come to appreciate that our knowledge of genes was too primitive to approach the important questions about gene activation and inactivation. This was just pre-Watson-Crick. I then went to the laboratory of Daniel Mazia to receive a two-year exposure to the thinking of a leader in cell biology, and while there became fascinated with the general problem of the integration of parcellated activities in cells and the specific problem of why, on cutting an ameba in half, the portion lacking the cell nucleus immediately rounded up and stopped moving, although on reinserting an ameba nucleus, even hours later, there was an immediate restoration of active movement. To acquire the tools of ultramicrobiochemistry, which I thought this problem required, I secured a fellowship with the biochemist Oliver Lowry, who was the Chairman of the Pharmacology Department at Washington University School of Medicine, St. Louis. While on the fellowship, Lowry persuaded the Anatomy Department to take me on as a faculty member with interests in biochemical approaches to cell biology. So I eventually found myself in an Anatomy Department despite a profound ignorance of the subject matter of all of the courses taught by members of this Department to medical students. However, some individuals within this Department were getting into electron microscopy, and as my research findings were beginning to indicate that molecules present in food vacuoles of ameba were providing a disturbing background for comparing the biochemistry of nucleate and enucleate halves of ameba, I persuaded my new colleagues to teach me electron microscopy. I used this technique to confirm my apprehensions relating to the long persistence of these food vacuoles and confirmed this by measuring the slow decay of DNA levels in starving ameba. And now entered the muse of vision research in the form of Bernard Wortman, who many of you will recall as a member of the National Eye Institute. Bernard, who was a practicing biochemist at Washington University, introduced himself to me and told me that he was working on the capsule of the lens. Since I was trying to learn some microscopic anatomy, I asked him whether the capsule contained cells as well as connective tissue. He wasn't sure. We could have looked it up but I had learned the techniques of electron microscopy. Why not fix an eye and see? We did. This was my first view of the structure of an eye. Bernard saw the lens capsule and I saw my first photoreceptor. Now here was a cell with obviously segregated structure implying segregated functions, and no food vacuoles. Thus began some side projects which evolved into a career. Initially, then, while reading to acquire some rudiments of vision physiology, I pursued electron microscopic investigations of photoreceptors and the retina. This helped me acquire some credentials as an anatomist although I eventually returned to the biochemical approaches which will be the main source of this lecture. A sabbatical year at Cambridge was spent in the Anatomy School, but it gave me an opportunity to meet with Giles Brindley, Fergus Campbell, Horace Barlow, and especially William Rushton whose enthusiasm particularly reinforced my growing interest in vision.

On returning to St. Louis, I accepted an invitation from Bernard Becker for a joint appointment in Ophthalmology, and I can never adequately express my thanks for the support and encouragement he has given to my nonclinical pursuits in a clinical setting. I must additionally acknowledge my great indebtedness to Oliver Lowry—an association which...
has persisted to this day. His amazing quick intelligence, broad interests, and gentle patience are an ongoing source of inspiration. I must also thank Jim Ferrendelli for introducing me to the world of cyclic nucleotides, as well as Nigel Daw, Alan Pearlman, Robert Miller, and Joel Brown, my fellow visionaries in St. Louis who allow me to pick their brains without complaint. To Drs. John Olney, Mike McDaniel, David Ross, Thomas Lewis, Frank Christensen, Gerald De Vries, Christine Blazynski, Duane Mitzel, Harry Orr, and Lary Andrews, all postdoctoral or predoctoral students who have worked in part with me, I can say in truth that I have learned at least as much from them as any contributions I made to their training. I, likewise, owe much to various excellent technicians, Shirley Freeman, Jean Jones, Patricia Baker, and Claudia Beaty. Finally, and most important, I must acknowledge my good fortune in having received unstinting sympathetic support over many years from my wife and family.

ADOLPH I. COHEN