Oxidative Inhibition of Ca2+-ATPase in the Rabbit Lens

Douglas Borchman, Christopher A. Paterson, and Nicholas A. Delamere

Hydrogen peroxide inhibition of maximum Ca2+-ATPase and Na+,K--ATPase activity was measured in a membrane-enriched preparation of rabbit lens cortical fibers and epithelium. At 5 \times 10^{-6} M hydrogen peroxide maximum Ca2+-ATPase activity was inhibited by 39\%, while maximum Na+,K--ATPase activity was stimulated. Ca2+-ATPase activity was almost completely inhibited at 5 \times 10^{-4} M hydrogen peroxide, in comparison to Na+,K--ATPase activity, which was only inhibited by 28\% at a concentration of hydrogen peroxide an order of magnitude larger. The addition of catalase to hydrogen peroxide-pretreated samples did not reverse the inhibition of Ca2+-ATPase by hydrogen peroxide.

Materials and Methods

Animal Tissues

Rabbit eyes were obtained from healthy 2 kg New Zealand strain albino rabbits, about 10 weeks old, killed painlessly by intravenous administration of T-61 euthanasia solution (American Hoechst Corp., Somerville, NJ). Lenses were dissected from the globe by a posterior approach. Separation of the lens epithelium, cortex and nucleus was the same as previously described.5 The experiments adhered to the ARVO Resolution on the Use of Animals in Research.

Membrane-Enriched Preparation

Cortical and epithelial material was pooled separately from eight rabbit lenses. Six separate pools of tissue were used in this study. After Teflon douncer homogenization, membrane-enriched microsomal preparations were made from each pool using a differential centrifugation protocol described previously.5 Membrane-enriched preparations, at a concentration of 2–7 mg/ml in buffer, were divided into 0.5 ml aliquots and stored frozen in liquid nitrogen for up to 1 week. All pools were prepared separately. After the assays for one pool of membrane material were completed, another pool was prepared. We have established that Ca2+-ATPase activity in our preparation does not diminish over a 1 month period storage in liquid nitrogen.

ATPase Activity

Ca2+-ATPase activity was measured at 37\°C as described in detail previously,5 using membrane at a
Cortical Ca2+-ATPase Activity

![Graph showing inhibition of lens Ca2+-ATPase activity by hydrogen peroxide in a membrane-enriched sample from rabbit lens cortical fibers.](image)

Fig. 1. Inhibition of lens Ca2+-ATPase activity by hydrogen peroxide in a membrane-enriched sample from rabbit lens cortical fibers. Ca2+-ATPase activity was measured at 37°C, pH 7.4 at a free calcium concentration of 1 \times 10^{-5} M. Calcium was buffered with EGTA, \(K_b = 1 \times 10^6 \). Error bars are ± standard error, \(n = 5 \) pools.

Epithelial Ca2+-ATPase Activity

![Graph showing inhibition of lens Ca2+-ATPase activity by hydrogen peroxide in a membrane-enriched sample from rabbit lens epithelial fibers.](image)

Fig. 2. Inhibition of lens Ca2+-ATPase activity by hydrogen peroxide in a membrane-enriched sample from rabbit lens epithelial fibers. Ca2+-ATPase activity was measured at 37°C, pH 7.4 at a free calcium concentration of 1 \times 10^{-5} M. Calcium was buffered with EGTA, \(K_b = 1 \times 10^6 \). Error bars are ± standard error, \(n = 5 \) pools.

Results

The basal cortical ATPase activity, in the absence of stimulation by calcium or sodium, was 340 ± 15 nmol/mg/hr. Maximal cortical calcium ATPase activity, in the presence of 10^{-5} M calcium, was 88 ± 30 nmol/mg/hr, matching the value of 78 ± 12 nmol/mg/hr previously measured for pooled rabbit cortex.5 The effect of hydrogen peroxide on cortical lens membrane calcium ATPase activity is shown in Fig-
At low concentrations of hydrogen peroxide (5 \times 10^{-6} M), calcium ATPase activity was inhibited by 43%. Calcium ATPase activity was almost completely inhibited at 5 \times 10^{-4} M hydrogen peroxide. The decrease in calcium ATPase activity in the presence of hydrogen peroxide concentrations ranging from 5 \times 10^{-6} to 10^{-4} M was found to be statistically significant with a P value of 0.018 (paired variants t-test). The degree of variability in the sensitivity of different pools of membrane material to hydrogen peroxide is reflected in the standard error.

Calcium ATPase activity in preparations of lens epithelium was 250 ± 150 nmol/mg/hr. The effect of hydrogen peroxide on lens epithelial membrane calcium ATPase activity is shown in Figure 2. The linear concentration-dependent inhibition of calcium ATPase by hydrogen peroxide was found to be significant with a P value equal to 0.005.

The inhibition of calcium ATPase by hydrogen peroxide was not reversed when hydrogen peroxide was removed by adding catalase to the reaction mixture (Fig. 3). In the presence of 5 \times 10^{-4} M hydrogen peroxide, the inhibition of cortical membrane calcium ATPase activity was 47 ± 10% in the sample pool tested. When the concentration of hydrogen peroxide was reduced to zero by adding catalase, the inhibition of calcium ATPase activity was unchanged. The addition of catalase alone to a control ATPase reaction mixture had no effect upon the calcium ATPase activity.

The Na\(^+\),K\(^+\)-ATPase activity observed in preparations of lens cortex was 550 ± 90 nmol/mg/hr, in agreement with previous studies. The ouabain sensitive component of ATPase activity was 26%, which is in agreement with our previous measurements, and those measured in the lens from other species. The effect of hydrogen peroxide on cortical lens membrane ATPase activity is shown in Figure 4. At a low concentration of hydrogen peroxide (5 \times 10^{-6} M), Na\(^+\),K\(^+\)-ATPase activity is stimulated slightly; at this same concentration of hydrogen peroxide, the calcium ATPase activity in the lens cortex was inhibited. At the highest concentration of hydrogen peroxide examined, (5 \times 10^{-3} M) Na\(^+\),K\(^+\)-ATPase activity was inhibited by only 28%.

Discussion

In this study we show that at low levels of hydrogen peroxide, Ca\(^+\)-ATPase activity can be inhibited substantially, while maximum Na\(^+\),K\(^+\)-ATPase activity is not diminished. This inhibition of Ca\(^+\)-ATPase activity by hydrogen peroxide occurs at a concentration of the oxidant (5 \times 10^{-6} M) an order of magnitude lower than that thought to be present in the aqueous of some cataractous lens patients.
oxidative inhibition of Ca\(^{2+}\)-ATPase. The inhibition of Na\(^{+}\),K\(^{-}\)-ATPase and Ca\(^{2+}\)-ATPase by oxidation has been explored by other investigators, but seldom concurrently in the same tissue. Kako et al\(^{20}\) propose three mechanisms that together or independently contribute toward decreased ATPase activity by oxidation: (1) alterations in phospholipid environment; (2) alterations in the conformation of membrane proteins resulting in membrane dysfunction; and (3) accumulation of degradation products in the membrane.

It has been proposed that Ca\(^{2+}\)-ATPase is more susceptible to alterations in lipid environment\(^{21-23}\) than the Na\(^{+}\),K\(^{-}\)-ATPase.\(^{24}\) It is perhaps because hydrogen peroxide increases the microviscosity (order) of the membrane lipid by oxidizing lipid acyl-chain double bonds that Ca\(^{2+}\)-ATPase activity is inhibited more effectively than Na\(^{+}\),K\(^{-}\)-ATPase, as we observed. While oxidative inhibition of Ca\(^{2+}\)-ATPase in several tissues has been explained by a lipid peroxidation mechanism,\(^{25-28}\) a reversible thiol oxidation reaction involving just the enzyme has been suggested for erythrocyte Ca\(^{2+}\)-ATPase in addition to an irreversible component involving lipid peroxidation.\(^{29}\)

It is also possible that oxidative degradation products could bind to the ATPase pumps and selectively inhibit ATPase activity. Malondialdehyde and 4-hydroxynonenal are both released during lipid peroxidation; malondialdehyde and 4-hydroxynonenal has been shown to inhibit Ca-uptake in liver microsomes.\(^{30}\) It is beyond the scope of this study to determine the precise mechanism behind the inhibition of lens ATPase activity by hydrogen peroxide. It is important to note that the active transport of ions could be more sensitive to oxidative damage than ATPase activity since oxidative damage could uncouple ion transport from ATPase activity.

It should be stressed that the experiments described in this study are performed with an isolated membrane preparation; no antioxidant enzymes, reduced glutathione or ascorbate are present. Thus, the level of hydrogen peroxide required to inhibit ATPase activity may be higher in the intact lens, where protective antioxidants are present. In the intact lens, the response of Ca\(^{2+}\)-ATPase to hydrogen peroxide may be considerably different; for example, we show here that inhibition of Ca\(^{2+}\)-ATPase by hydrogen peroxide is not reversible while an apparently normal enzyme activity has been measured in membranes from intact lenses treated with hydrogen peroxide and allowed to recover.

The current study suggests that low levels of hydrogen peroxide that do not inhibit the Na\(^{+}\),K\(^{-}\)-ATPase pump might inhibit the Ca\(^{2+}\)-ATPase. A consequence of such inhibition would be accumulation of extracellular calcium. A build-up of intracellular lens calcium is undoubtedly deleterious to lens function.\(^{31}\) Elevated levels of intracellular calcium may cause lens opacity by interacting with cytoplasmic proteins,\(^{32-34}\) activating proteases\(^{35-37}\) or lipases,\(^{38}\) or calmodulin-activated pathways.\(^{39}\)

Key words: calcium-ATPase, sodium-potassium-ATPase, lens, membrane, cortex, epithelium, hydrogen peroxide

References

