P2Y₂ Receptor Agonist INS37217 Enhances Functional Recovery after Detachment Caused by Subretinal Injection in Normal and rds Mice

May Nour,¹ Alexander B. Quiambao,² Ward M. Peterson,³ Muayyad R. Al-Ubaidi,¹,² and Muna I. Naash¹,²

PURPOSE. To evaluate the effects of INS37217 on the recovery of retinal function after experimental retinal detachment induced by subretinal injection.

METHODS. Subretinal injections of 1 µL of fluorescent microbeads, saline, or INS37217 (1-200 µM) were made by the transvitreal method in normal (C57BL/6) mice and in mice heterozygous for the retinal degeneration slow (rds) gene. Control, mock-injected animals underwent corneal puncture without injection. Histologic and ERG evaluations were made at 0 to 1 and 8 hours, and 1, 3, 7, 10, 14, and 60 days post injection (PI). DNA fragmentation was evaluated by terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate-biotin nick end labeling (TUNEL).

RESULTS. A single subretinal injection of saline solution containing fluorescent beads caused a histologically evident retinal detachment and distributed the microbeads to almost all the subretinal space. Spontaneous reattachment occurred within 24 hours after injection and was accompanied by evident retinal folding that appeared largely resolved by 6 days later. Relative to controls, injection of saline resulted in approximately 40% recovery of dark-adapted a-wave amplitude at 24 hours PI and gradually improved to approximately 90% of controls at 2 months PI. Subretinal injection of saline containing INS37217 (10 µM) significantly increased rod and cone ERG of normal and rds¹/² mice at 1 and 10 days PI, when compared with injection of saline alone. Additionally, INS37217 reduced the number of TUNEL-positive photoreceptors and the enhanced rate of reattachment.

CONCLUSIONS. Enhancement of ERG recovery by INS37217 is likely due to reduced retinal folding and cell death associated with detachment. These results support the use of INS37217 to help restore function after therapies that involve subretinal administration of drugs in animal models of retinal diseases.

From the ¹Oklahoma Center for Neuroscience and the ²Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and ³Inspire Pharmaceuticals, Durham, North Carolina.

Supported by Grant EY10609 (MIN) and Core Grant for Vision Research (EY12190) from the National Eye Institute; Inspire Pharmaceuticals, Inc.; the Foundation Fighting Blindness (MIN, MRA); and the Oklahoma Center for the Advancement of Science and Technology. MIN is a recipient of the Research to Prevent Blindness James S. Adams Scholar Award.

Accepted June 12, 2003; revised June 9, 2003; accepted June 12, 2005.

Disclosure: M. Nour, None; A.B. Quiambao, None; W.M. Peterson, Inspire Pharmaceuticals (I, E); M.R. Al-Ubaidi, None; M.I. Naash, None.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Corresponding author: Muna I. Naash, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, BM85 781, Oklahoma City, OK 73104; muna-naash@ouhsc.edu.

Copyright © Association for Research in Vision and Ophthalmology
adverse effects of naturally occurring and induced retinal detachments. Active and passive transport of ions and fluid across the RPE has been shown to play a major role in the regulation of subretinal fluid volume and composition. Activation of appropriate fluid transport pathways in the RPE can therefore be targeted as a means of promoting retinal reattachment. For appropriate fl.

The use of Laboratory Animals and the ARVO Statement for the Use of animals: MIN232 (5'-TGACCAAGACAGATGG-3') from the Ppib-2 gene intron I and MIN99 (5'-GACCCAGATCCGATGGCA-3') from the naturally occurring 9.2 kb inserted element in the mutant rds gene. All mice studied were maintained in a breeding colony under cyclic light (12-hour light-dark) conditions; cage illumination was approximatley 1 foot-candles during the light cycle. All experiments were approved by the local Institutional Animal Care and Use Committees, and conformed to the National Institute of Health Guide for the Care and Use of Laboratory Animals and the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.

Transvitreal Subretinal Injections

After anesthesia by an intramuscular injection of 85 mg/kg ketamine (Fort Dodge Animal Health; Fort Dodge, IA) and 14 mg/kg xylazine (The Butler Company; Columbus, OH) and topical anesthesia with 0.5% proparacaine (Alcon Laboratories Inc., Fort Worth, TX), animals were placed on a regulated heating pad, and images of the posterior pole were magnified under an operating microscope (model 212F; Ausjena, Jena, Germany). After completion dilation was achieved, a drop of 2.5% methylcellulose was added to the corneal surface to visualize the fundus. A 28-gauge beveled hypodermic needle (BD Biosciences, Franklin Lakes, NJ) was used to puncture the cornea carefully, avoiding any contact with the lens. The transvitreal subretinal injections, previously described in rat, were then performed with a 33-gauge blunt needle (Hamilton Co., Reno, NV). The blunt needle tip was inserted through the corneal puncture, across the vitreous and the shaft aimed at the back of the eye, avoiding any trauma to the lens or iris. A 1-μL volume of saline + fluorescein (0.1 mg/mL) or INS37217 (1–200 μM)+ fluorescein (0.1 mg/mL) was injected into the subretinal space. Fluorescein was added to the injected material to visualize the injection, and bleb formation and was cleared from the eye as early as 4 hours post injection (PI). As a control for anesthesia, corneal puncture and erythromycin treatment, a group of animals underwent corneal puncture without subretinal injection. Subsequent to the injection, an erythromycin ophthalmic ointment (E. Fougera & CO, Melville, NY) was applied to the corneal surface to reduce the risk of infections and the associated opacifications. Animals injected with saline or fluorescent microbead solution (Fluresbrite plain YG 1.0 μm microspheres; Polysciences, Inc., Warrington, PA) were then electrophysiologically assessed and then euthanized to 1, 8 hours, 14, and 60 days PI. For each time point, an independent group of animals was analyzed. Side effects of the subretinal injection procedure include iris and subretinal bleeding (5%-10% incidence rate) which can contribute to either the persistence of retinal detachment or additional tractional retinal detachment (data not shown). Furthermore, any damage of the lens caused cataract formation (3%-5% incidence rate), which was observed several days after the injection. Animals with such complications were excluded from analysis.

Tissue Preparation for Histology

Mice were anesthetized with 50 mg/kg pentobarbital (Nembutal; Abbott Laboratories, Santa Clara, CA) and eyes were fixed by transcardiac perfusion with formaldehyde and glutaraldehyde (1% and 2%, respectively) in 0.1 M sodium phosphate buffer (pH 7.4). After the eyes were enucleated, the posterior portion of each eye, containing the retina and retinal pigment epithelium was fixed additionally for 24 hours in 0.1 M phosphate buffer (pH 7.4) containing 2% formaldehyde and 2.5% glutaraldehyde. The tissues were then osmicated, dehydrated through a graded ethanol series, embedded in paraffin, and processed for paraffin sectioning. The sections (0.5 μm) were cut, and then histochemically stained with hematoxylin and eosin (H&E) in preparation for light microscopy. For each time point, six animals were used to evaluate retinal histology. The extent of retinal detachment was determined by drawing a measurement arc covering the region of physical separation of neural retina from RPE. The lengths of these arcs were calculated using computer-based interactive measurements (Axiovision; Carl Zeiss Meditec, Oberkochen, Germany).

For the evaluation of fluorescent microbead distribution, mice were anesthetized as described earlier and fixed by transcardiac perfusion with 4% paraformaldehyde for cryostat sectioning. After enucleation and a 1-hour fixation in 4% paraformaldehyde, the anterior segment was removed, and the sections (0.5 μm) were cut through the horizontal meridian, passing through the optic nerve, and stained with hematoxylin and eosin (H&E) in preparation for light microscopy. For each time point, six animals were used to evaluate retinal histology. The extent of retinal detachment was determined by drawing a measurement arc covering the region of physical separation of neural retina from RPE. The lengths of these arcs were calculated using computer-based interactive measurements (Axiovision; Carl Zeiss Meditec, Oberkochen, Germany).

For the evaluation of fluorescent microbead distribution, mice were anesthetized as described earlier and fixed by transcardiac perfusion with 4% paraformaldehyde for cryostat sectioning. After enucleation and a 1-hour fixation in 4% paraformaldehyde, the anterior segment was removed, and the sections (0.5 μm) were cut through the horizontal meridian, passing through the optic nerve, and stained with hematoxylin and eosin (H&E) in preparation for light microscopy. For each time point, six animals were used to evaluate retinal histology. The extent of retinal detachment was determined by drawing a measurement arc covering the region of physical separation of neural retina from RPE. The lengths of these arcs were calculated using computer-based interactive measurements (Axiovision; Carl Zeiss Meditec, Oberkochen, Germany).

Electroretinogram and Statistical Analysis

After at least 4 hours of dark adaptation, animals were anesthetized (as indicated in the injection protocol), vibrissae were trimmed, and the eyes were dilated using 2.5% phenylephrine. Animals were placed on a regulated heating pad throughout the experiment. Electroretinograms (ERGs) were recorded using a stainless steel wire contacting the corneal surface through a layer of 2.5% methylcellulose. Needle elec-
trodes in the cheek and tail of the animal served as reference and ground leads, respectively. Responses were differentially amplified (half bandpass, 1–4000 Hz), averaged, and stored by using a signal-averaging system (Compact 4; Nicolet, Madison, WI). For the assessment of rod photoreceptor function, a strobe flash stimulus was presented to the dark-adapted, dilated eyes in a Ganzfeld (model Gs-2000; Nicolet) with a 157-cd (sec/m²) flash intensity. The amplitude of the a-wave was measured from the prestimulus baseline to the a-wave trough. The amplitude of the b-wave was measured from the trough of the a-wave to the crest of the b-wave. To evaluate the recovery of cone photoreceptors in rdS / + mice, animals were light adapted for 5 minutes under a light source of 29.02 cd/m² intensity. After this period of light-adaptation, a strobe flash stimulus was presented to the dilated eyes in the Ganzfeld with a 77-cd (sec/m²) flash intensity. The amplitude of the cone b-wave was measured from the trough of the a-wave to the crest of the b-wave.

One-way analysis of variance (ANOVA) and post-hoc tests using Bonferroni’s pair-wise comparisons were used to determine the significance of differences in the ERG amplitudes after subretinal injection with the different treatments (Prism, ver. 3.02; GraphPad, San Diego, CA).

TUNEL Detection after Subretinal Injection

Animals were subretinally injected with either 1 µL of saline, INS37217 (10 µM), or mock-injected and killed 48 hours PI. After death and enucleation, the anterior segments of eyes were removed and the posterior portion placed in 4% paraformaldehyde overnight. In preparation for cryostat sectioning, eyes were placed in a 30% solution of sucrose overnight, embedded in M-1 matrix (Shandon), and sectioned throughout the entire eye. TUNEL detection was performed according to manufacturer guidelines for cell death detection (In Situ Cell Death Detection Kit, TMR red; Roche Applied Sciences, Mannheim, Germany). After completing the labeling and washing, slides were coverslipped using antifade mounting medium for fluorescence (Vector Laboratories, Burlingame, CA).

RESULTS

Time Course of Retinal Reattachment

Histologic cross sections spanning the meridian of the eye were used to evaluate the extent and time course of retinal detachment and reattachment at 0 to 1 hour, 8 hours, and 1, 3, and 7 days after a single 1-µL subretinal injection of saline (Fig. 1). Retinal detachment was defined as a morphologically evident, physical separation of neural retina from RPE. This separation appeared greatest near the site of injection, and tapered in effect at sections distal from the site of injection. Representative sections are shown in Figures 1A–F. The gross morphologic extent of retinal detachment (measured in millimeters) was assessed throughout the cross section of the eye that contained the site of injection. As shown in Figure 1G, the values were averaged and plotted for each time point. At 0 to 1 hour PI, approximately 60% of the retina was detached (Fig. 1B). By 8 hours PI, there was an extensive decrease in the level of retinal detachment (Fig. 1C), and gross reattachment appeared complete by 24 hours PI (Fig. 1D). However, extensive retinal folding was also observed at 1 day PI (Fig. 1D) and as late as 3 days PI (Fig. 1E). This retinal folding appeared fully resolved at 7 days PI (Fig. 1F). We observed faint remnants of retinal restructuring at 7 days PI in some eyes (Fig. 1F; boxed area), but in most of the animals, the retinal folding appeared completely resolved at the site of injection (data not shown).

Distribution of the Injected Material in the Subretinal Space

To examine the distribution of the injected material in the subretinal space, animals were subretinally injected with 1 µL saline containing fluorescent microbeads and then examined either immediately after the injection (0–1 hour) or 7 days PI. The distribution of the microbeads was assessed by fluorescence microscopy (Figs. 2, 3). Immediately after the injection, nonuniform retinal blebs were apparent throughout the eye cup as an indicator of retinal detachment caused by the injection (Fig. 2A). The fluorescent microbeads were distributed throughout the eye cup. Figure 2B shows a representative cross section of the eye cup taken 1 hour after the injection and centered around the site of injection. Higher magnification of Nomarski and fluorescence overlay (Figs. 2C–F) and their corresponding fluorescence images alone (Figs. 2G–J) of the areas indicated by rectangles in Figure 2B clearly reflect the level of retinal detachment and the distribution of fluorescent beads in the subretinal space. Although the beads were distributed throughout the retina, a higher concentration was observed at the site of injection (Figs. 2I, 2J), gradually decreasing in sections away from the injection site (Figs. 2G, 2H).

After retinal reattachment, Figure 3A shows a flattened eye cup 7 days PI, demonstrating the distribution of beads throughout the entire thickness of these eyes. A cross section of these eyes showed most of the beads to be located in the RPE (Fig. 3B). To confirm fluorescent microbead distribution, we removed the retina and washed the eye cup three times with saline to eliminate any remnants of beads in the subretinal space. Although some beads were detected in the wash, most of them were retained in the RPE (Fig. 3C). The washed eye cup was then cryosectioned and analyzed histologically (Fig. 3D). Fluorescence images of these sections show the localization of the fluorescent microbeads inside the RPE cells (Fig. 3E), indicating the regained ability of RPE cells to phagocyte materials immediately after retinal reattachment.

Recovery of the Dark-Adapted Rod Responses after Retinal Reattachment

Dark-adapted ERG recordings were conducted at 1, 3, 7, 14, and 60 days after injection of 1 µL saline in normal mice. Both dark-adapted a- and b-wave amplitudes showed an improvement in rod function over the 60-day recording period (Fig. 4). At 1 day PI, dark-adapted a- and b-wave amplitudes were reduced approximately 60% compared to those of mock-injected animals (.001; Bonferroni’s pair-wise test). The recovery of dark-adapted ERG amplitudes continued with the progression of time. However, the data demonstrate that even at day 14 after retinal detachment, both rod a- and b-wave amplitudes remained significantly less than in mock-injected control eyes. Finally, at 60 days PI, the retina produced a dark-adapted ERG response that was comparable to that in mock-injected eyes.

Effect of INS37217 on Rod Functional Recovery after Retinal Detachment in Normal Mice

Dark-adapted ERG recordings were made from normal mice at 1 and 10 days after a 1-µL subretinal injection of saline alone or of saline containing INS37217 at concentrations ranging from 1 to 200 µM. Figure 5A shows the dose–response curve at day 1 PI. Select doses of INS37217 produced a significant increase in dark-adapted a- and b-wave amplitudes when compared with saline-injected eyes. The effects of INS37217 appear to follow a “bell-shaped” dose–response curve. Of the doses used in this study, one-way ANOVA and Bonferroni’s pair-wise comparison revealed a statistically significant (P < 0.05) improvement in a-wave ERG recovery with the 10-µM dose (Fig. 5A, asterisks). In terms of b-wave recovery, eyes injected with 10 and 20 µM of INS37217 showed a statistically significant (P < 0.05) improvement when compared with saline-injected eyes (Fig. 5A, asterisks). Rod ERG function continued to recover in this pattern, showing a more significant (P < 0.001) recovery in...
INS37217- versus saline-injected eyes up to 10 days PI (Figs. 5B, 5C, asterisks). At 10 days after retinal detachment, INS37217-treated eyes showed an approximate 90% recovery of rod ERG function when compared to the 50% recovery in the saline-injected eyes. Figure 5B shows representatives of dark-adapted ERG waveforms taken from mock-, saline-, and INS37217-injected eyes at 10 days PI. Averages of these treatment groups are shown in Figure 5C, further demonstrating the favorable effects of this compound.

Effect of INS37217 on Functional Recovery after Retinal Reattachment in an rds+/− Mouse Model of Retinitis Pigmentosa

The effects of subretinal injection of saline (1 μL) with or without INS37217 (10 μM) on dark- and light-adapted ERG responses were also evaluated in 1-month-old rds+/− mice and compared with mock-injected eyes. The functional recovery was monitored 1 day after subretinal injection. Although the rate of retinal degeneration is slow in rds−/− mice, the abnormality in photoreceptor outer segment structure results in an approximate 65% reduction in rod ERG response by 1 month of age, whereas conespecific ERG responses remain unaffected at this age.40 In INS37217-treated eyes, significant increases in dark-adapted a- and b-wave amplitudes (Figs. 6A, 6B) and in light-adapted cone b-wave amplitudes (Figs. 6C, 6D) were observed when compared with saline-injected control eyes (P < 0.05). Representative ERG waveforms in Figures 6A and 6C illustrate this enhancement in ERG function afforded by the 10 μM dose of INS37217 under dark- and light-adapted conditions, respectively. This finding demonstrates the ability of INS37217 to have a positive effect on the enhancement of functional recovery of rods and cones, even in a degenerating mouse retina.

Effect of INS37217 on Retinal Folding and the Number of TUNEL-Positive Cells after Retinal Reattachment in Normal Mice

In saline-injected eyes, most retinal folding occurred at the site of injection (Figs. 1, 2). Figure 7 demonstrates the extent of...
retinal folding in saline-injected and INS37217-injected (10 \(\mu\)M) eyes 2 days PI after complete morphologic reattachment had occurred. When compared with saline-injected eyes (Figs. 7C, 7E), INS37217-treated retinas achieved morphologic reattachment with dramatically less folding, even at the site of injection (Figs. 7D, 7F, needle track in D). Representative sections also show a correlation between photoreceptors residing in the folded region of the retina and TUNEL-positive staining (Figs. 7C–F). After examination of cross sections spanning the entire eyecup of injected mice, evaluation showed a dramatic reduction in the number of TUNEL-positive cells in INS37217 (10 \(\mu\)M)-treated eyes (Figs. 7D, 7F) when compared with their saline-injected counterparts (Figs. 7C, 7E). Mock-injected animals showed neither retinal folding (Fig. 7A) nor TUNEL-positive photoreceptor cells throughout the entire eyecup (Fig. 7B).

DISCUSSION

With the most recent developments in prospective gene therapies for retinal diseases26,43–48 and their great promise for clinical applications,28 it is critical to measure the efficacy of these therapies in well-characterized animal models with phenotypes closely resembling those of patients. The mouse eye is widely used as a model for a variety of human ocular diseases and can therefore be used to test the efficacy of novel therapeutic approaches for treating human retinal diseases. So far, the most effective means of delivering gene therapies to the photoreceptor and RPE cells is through subretinal delivery. However, any volume injected in the subretinal space causes a temporary retinal detachment. Persistence of this detachment leads to many negative consequences that impact visual function. Because the interaction between photoreceptors and RPE is vital, one must balance the resultant detachment needed for the distribution of therapeutic agent with that of the pathologic state caused by the detachment.1,2,33,49 Although in the normal retina, retinal reattachment after temporary detachment eventually leads to a relatively complete recovery of morphology and function,4,42,50 cell death still occurs.1 No study to date has shown the effect of experimental retinal detachment on the recovery of either retinal morphology or visual function in animal models of retinal degeneration.
In the current study, a single subretinal injection of 1 μL saline solution containing fluorescent microbeads caused a retinal detachment and distributed the microbeads to almost all of the subretinal space. Gross histologic evaluation revealed that spontaneous retinal reattachment occurred within 24 hours PI and retinal folding was observed for another 2 days but appeared largely resolved by 7 days after the initial detachment. Functional recovery, as determined by ERG responses, did not correlate with the rate of morphologic reattachment. In mice, the recovery of dark-adapted a-wave ERG amplitudes at 1, 3, 7, 14, and 60 days after a single subretinal injection was shown to be, respectively, 36%, 42%, 52%, 61%, and 90% of the a-wave of mock-injected control mice (100%). The recovery of dark-adapted b-wave ERG amplitudes at 1, 3, 7, 14, and 60 days after a single subretinal injection was shown to be, respectively, 44%, 31%, 45%, 61%, and 90% of the b-wave of mock-injected control mice (100%). The recovery of dark-adapted b-wave ERG amplitudes for the same time points were 44%, 31%, 45%, 61%, and 98% of the b-wave of mock-injected control animals. This dissociation between time course of morphologic reattachment and functional recovery, in part, reflects retinal restructuring that occurs as a result of retinal detachment and persists even after achieving a significant level of reattachment. These results are consistent with previous reports of compromised retinal function after retinal reattachment in humans and in experimental animal models,促使 us to evaluate the use of pharmacological approach for enhancing recovery of retinal ERG function after detachment in mice.

Earlier studies have demonstrated that the synthetic P2Y₂ receptor agonist INS37217 stimulates subretinal fluid reabsorption and improves the rates of retinal reattachment in rat and rabbit models of experimental retinal detachment. Herein, we show that subretinal injection of saline solution containing INS37217 (10 μM) significantly enhanced recovery of a- and b-wave amplitudes at 1 and 10 days PI in normal mice, when compared with saline-injected control animals. Of the doses of INS37217 tested, the ERG rescue effect of 10 μM INS37217 appeared optimal. The reason for the absence of protective effect on ERG function at higher INS37217 concentrations is unknown and remains to be investigated. However, we observed no obvious toxicological effect of INS37217 on the retina at higher concentrations, a finding that is consistent with previous rabbit ERG studies of intravitreally administered INS37217. We also report that, when compared with saline-injected controls, INS37217 (10 μM) also enhanced the recovery of rod and cone functions in 1-month old rds⁻/⁻ mice. This enhancement in functional recovery persisted at 10 days PI (data not shown). The data in the rds⁻/⁻ mouse model of retinitis pigmentosa demonstrate a protective effect of INS37217 on rod and cone function after experimental detachment in a relatively advanced stage of photoreceptor dysfunction. This finding has direct implications for the potential use of subretinal injection as a means of delivering therapeutic agents in patients.

Although studies have shown that factors such as brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) (Lewis GP, et al. IOVS 1998;39:ARVO Abstract 2647), as well as oxygen supplementation reduces photoreceptor cell death and mitigates the progression of a number of detachment-induced retinopathic changes in experimental animals, the effects of these factors on functional recovery after retinal reattachment have not been reported. Our present findings with INS37217 represent the first example of the use of a pharmacological agent to improve ERG recovery after retinal reattachment.
function after experimental retinal reattachment in healthy eyes and in a model of inherited photoreceptor degeneration. Although the underlying mechanism driving this ERG-enhancing effect of INS37217 in mice needs further examination, notable differences in retinal morphology were detected between saline and INS37217-injected eyes as early as 2 days after

Figure 6. Effect of INS37217 on the recovery of the dark- and light-adapted ERG after retinal reattachment in the rds-/- mice. (A) Representatives of the dark-adapted ERG waveforms from saline-, INS37217-, and mock-injected eyes at 1 day PI reflect the enhancement in the rod function afforded by the 10-μM dose of INS37217. (B) Dark-adapted ERG a- and b-wave amplitudes recorded at 1-day PI from animals that were mock-injected control, saline-injected, or saline + INS37217 (10 μM)-injected animals. Data are averaged from 8 to 10 independent measurements. (C) Representative light-adapted waveforms showing the enhanced recovery of the cone ERG amplitudes as a result of injection of INS37217. (D) The average values of the recovery of the light-adapted b-wave from eight independent measurements showing a significant enhancement in cone function afforded by the 10-μM dose of INS37217. Data were also obtained from saline injections in the contralateral eye of the INS37217-injected animals. ERG values represent averages of 8 to 12 eyes per treatment.
Acknowledgments

The authors thank Adrian Timmers for demonstrating transvitreal subretinal injection and Rusty Montgomery and Kathy Alvarez for technical assistance.

References

