Optimization of Subconjunctival Biodegradable Microfilms for Sustained Drug Delivery to the Anterior Segment in a Small Animal Model

Yu-Chi Liu,1,2 Yan Peng,3 Nyein Chan Lwin,1 Tina T. Wong,2–4 Subbu S. Venkatraman,3 and Jodhbir S. Mehta1,2,5

1Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
2Singapore National Eye Centre, Singapore
3School of Materials Science and Engineering, Nanyang Technological University Singapore
4Ocular Therapeutics and Drug Delivery Research Group, Singapore Eye Research Institute, Singapore
5Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore

Correspondence: Jodhbir S. Mehta, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751; jodmehta@gmail.com.
Subbu S. Venkatraman, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; assubbu@ntu.edu.sg.

YCL and YP contributed equally to this work presented here and should therefore be regarded as equivalent authors.

Submitted: December 10, 2012
Accepted: March 14, 2013

PURPOSE. We evaluated a biodegradable, sustained-release, prednisolone acetate (PA)-loaded poly[d,l-lactide-co-ε-caprolactone] (PLC) drug delivery system on its biocompatibility, feasibility and release characteristics in vitro and in vivo.

METHODS. Blank and 40% PA-loaded PLC microfilms with a diameter of 2 mm were fabricated, and the degradation and drug release profiles of the microfilms were characterized in vitro and in vivo. The microfilms were implanted into the subconjunctival space of Lewis rats (n = 48). All eyes were assessed clinically using slit-lamp biomicroscopy, and graded with Hackett-McDonald ocular scoring system and anterior segment optical coherence tomography. Histologic and immunohistochemical analyses were performed comparing blank and PA-loaded microfilm groups. PA concentrations in the aqueous humor were determined by HPLC.

RESULTS. Subconjunctivally-implanted PLC microfilms were able to deliver PA in a sustained manner over 3 months, with a steady rate of 0.002 mg/d in vivo. Eyes with either blank or PA-loaded implanted microfilms showed a very minimal inflammatory response at the insertion sites and mild degree of collagen encapsulation around the microfilms, with significantly less CD11c cells at 2 and 4 weeks (P = 0.001 and P = 0.002), and collagen formation at 2 weeks (P = 0.001) in the PA-loaded microfilm group. Anterior chamber PA levels were achieved, with concentrations at 76.7 ± 5.9, 70.3 ± 2.3, and 42.7 ± 4.1 ng/mL at 2, 4, and 12 weeks, respectively.

CONCLUSIONS. PA-loaded PLC microfilms display good biocompatibility, feasibility, and desirable sustained drug release profiles, and have the potential to exhibit antiinflamatoty and anti-inflammatory effects. This device is applicable to use in small animal models of anterior segment inflammation.

Keywords: poly[d,l-lactide-co-ε-caprolactone] (PLC), drug delivery system, anterior segment inflammation

Drug delivery to the anterior segment of the eye always has been a challenging issue. Topical eye drops, the most common route of administration of treatment for ocular anterior segment disease, has a low bioavailability of 1% to 10%; hence, therapeutic concentrations may not be reached.1 In addition, topical eye drops often have a short duration of action so that frequent application of drops is required. This may result in patients’ discomfort due to ocular surface toxicity and the correct dosing regimen is highly dependent on patients’ compliance. Therefore, different drug delivery systems have been investigated to address these limitations related to eye drops. Among them, the use of biodegradable polymeric implants to deliver a sustained drug level in the eye recently has become a topic of interest.2–6

A biodegradable implant is a matrix containing a biodegradable polymer, typically constructed from a synthetic aliphatic polyester of the poly-α-hydroxy acid family, such as polylactic acid (PLA), poly[d,l-lactide-co-glycolide] (PLGA) or poly[d,l-lactide-co-ε-caprolactone] (PLC).4 All are proven vehicles for sustained drug release.2–3 They have many advantages because they can be fabricated with various sizes, shapes, and thickness to modulate the amount and duration of drug release, tailoring to different ocular diseases and severities, since polyhydroxyesters are fabricated easily with predictable biodegradation kinetics.7 They can provide a stable drug concentration over weeks to months,3,8 and this sustained release eliminates the dependency of patients’ compliance. Moreover, there is no need to remove the implant after the depletion of the drug, because the implant undergoes hydrolysis to the original monomers. For example, PLGA copolymers metabolize into lactic acid and glycolic acid, and PLC copolymers metabolize into lactic acid and caproic acid. These monomers are nontoxic, and eliminated safely via the Krebs cycle by conversion to carbon dioxide and water without causing any foreign body reactions.2 Among different biodegradable polymers for ocular drug delivery, PLGA copolymers have been
Sustained Drug Delivery to the Anterior Segment

Corticosteroids are used in a broad spectrum of ocular conditions and are among the most frequently prescribed drugs in ophthalmology. They have a major role in the treatments of a wide range of ocular anterior segment diseases, for example, viral/allergic conjunctivitis, episcleritis, scleritis, keratitis, and uveitis, and in the managements of postoperative conditions, such as inflammation after cataract, glaucoma filtration, and corneal transplant surgery. To circumvent the limitations of intensive application of topical therapy, alternative routes of drug administration often are used, for example, subconjunctival, sub-Tenon’s, intracameral, or retrobulbar injection. However, the duration of action of injection-based treatments of a wide range of ocular anterior segment diseases, such as inflammation after cataract, glaucoma filtration, and corneal transplant surgery, is relatively new, and very few ocular applications are reported in the literature.

In Vitro Studies

In Vitro Microfilm Degradation Study. Microfilms were immersed in closed vials containing 5 mL PBS. At 1, 2, 4, 8, and 12 weeks, samples (n = 5 for each time point) were taken out, rinsed with deionized water and dried in a 37°C vacuum oven for 7 days. Dried samples were dissolved in chloroform (1–2 mg/mL) and filtered through 0.22 μm regenerated cellulose syringe driven filters before testing. Weight average molar mass (M_w) and number average molar mass (M_n) of the samples were determined by gel permeation chromatography (GPC, Agilent 1100; Agilent Technologies, Santa Clara, CA) at 35°C, using Agilent PL gel 5 μm mixed-C column, under a flow rate of 1 mL chloroform per minute, using a Refractive Index Detector (RID). The microfilm degradation rate constant (λ) was the slope of the fitted line of natural log of M_w versus time, and a higher value of λ means a faster rate of degradation.

In Vivo Studies

Animals and Surgical Insertion of Microfilms. We used 48 eyes of 24 female Lewis rats (Rtl®) aged 8 to 10 weeks. All animals were treated in accordance with the tenets of the Association for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research, and the protocol was approved by the Institutional Animal Care and Use Committee of SingHealth. After the animals had been anesthetized with intraperitoneal injection of ketamine hydrochloride (50–75 mg/kg) and xylazil (5–8 mg/kg), the eyes had been anesthetized with intraperitoneal injection of ketamine hydrochloride (50–75 mg/kg) and xylazil (5–8 mg/kg), the eyes were divided into two groups: blank microfilm (9 eyes) and PA-loaded microfilm (39 eyes) groups. Of the 39 PA-loaded microfilms-implanted eyes, 30 were used for the microfilm degradation and drug release studies in vivo, and the remaining nine eyes were used for histologic and immunohistochemical studies. For the surgical insertion of the microfilm, a subconjunctival pocket via blunt dissection just above the limbus was created with a 2.0 to 2.2-mm incision at the superotemporal aspect of the rat’s eye, and the microfilm was inserted into the subconjunctival pocket. Closure with two 10-0 nylon sutures was done to ensure secure implantation of the microfilm. The surgical procedures were performed by the same surgeon (YCL) who was masked to the types of the microfilms inserted. After microfilm insertions, topical tobramycin ointment was given 4 times daily for 3 days.

In Vivo Microfilm Degradation and Drug Release Studies. For the in vivo microfilm degradation study, the microfilms were retrieved from the subconjunctival space at 1, 2, 4, 8, and 12 weeks after insertion (n = 3 for each time point), and were tested by GPC as described in the in vitro studies to obtain M_w and M_n. For the in vivo drug release testing, the microfilms were retrieved at 3 days, and 1, 2, 4, and 12 weeks. The amount of the residual drug was obtained by using HPLC as described in the in vitro studies to derive the daily and cumulative drug release. In addition, 15 μL of aqueous humor from each eye (n = 6 at 2, 4, and 12 weeks, respectively) were aspirated using a 30-gauge needle. The aqueous humor was pooled to 30 μL for the analysis. The PA concentrations in the aqueous humor were analyzed by using HPLC.
conjunctival congestion (0–3), swelling (0–4), and discharge (0–3) around the microfilm insertion sites. Anterior segment optical coherence tomography (ASOCT; RTVue; Optovue, Inc., Fremont, CA) scanning was used to assess the anatomic location of the microfilms. The clinical examinations were performed at 1 day after microfilm insertions and twice weekly thereafter.

Histology Analysis, Picrosirius Red, and Immunohistochemistry Staining. At 2, 4, and 12 weeks after insertions, three rats (6 eyes) for each time point were euthanized with overdose intraperitoneal pentobarbitone (60–150 mg/kg) followed by enucleation of eyes. The eyeballs (3 eyes for blank and PA-loaded microfilm group each) were embedded in OCT cryo-compound (Leica Microsystems, Nussloch, Germany), and then were cut into 7 μm slices using a cryostat (Microm HM 550; Microm, Walldorf, Germany).

The sections were stained with hematoxylin for 3 minutes and eosin for 2.5 minutes, and then were washed in tap water, semidried and mounted with paramount. The sections were viewed using a light microscope (Nikon Eclipse Ti-S; Nikon, Carlsbad, CA) at room temperature for 1 hour. Slides then were incubated with goat antimouse Alexa Fluor 488-conjugated secondary antibody (A11001; Invitrogen, Carlsbad, CA) and CD45 (MCA43R; AbD Serotec, Oxford, UK) and CD11c (MCA1441; AbD Serotec, Oxford, UK) in 1× PBS, blocked with 1% BSA in 1× PBS for 30 minutes, and then were incubated with goat antimouse Alexa Fluor 488-conjugated secondary antibody (A11001; Invitrogen, Carlsbad, CA) at room temperature for 1 hour. Slides then were mounted with medium containing DAPI (UltraCruz Mounting Medium; Santa Cruz Biotechnology, Santa Cruz, CA). Sections were viewed and imaged with a fluorescence microscope (Zeiss Axioplan 2; Carl Zeiss, Oberkochen, Germany). For immunohistochemistry analysis, sections were fixed with 4% paraformaldehyde for 10 minutes, washed with 1× PBS, blocked with 1% BSA in 1× PBS for 30 minutes, and then were incubated with mouse anti-rat CD11c (MCA1441; AbD Serotec, Oxford, UK) and CD45 (MCA43R; AbD Serotec) monoclonal primary antibodies for 1.5 hours at room temperature (M0851; Dako, Carpinteria, CA). After washing with 1× PBS, the sections were incubated with goat antimouse Alexa Fluor 488-conjugated secondary antibody (A11001; Invitrogen, Carlsbad, CA) at room temperature for 1 hour. Slides then were mounted with medium containing DAPI (UltraCruz Mounting Medium; Santa Cruz Biotechnology, Santa Cruz, CA). Sections were viewed and imaged with a fluorescence microscope (Zeiss Axioplan 2; Carl Zeiss, Oberkochen, Germany). For quantification of CD11c and CD45 stained cells, 5 nonoverlapping sections of each eye were chosen randomly for cell counting. The cells were counted in a ×400 microscopic field by a single masked observer (YCL).

Statistical Analysis

All data were expressed as mean ± SD. Statistical comparisons between blank and PA-loaded microfilm groups were performed using the Student’s t-test. All data analyses were done with SPSS software package (SPSS, Inc., Chicago, IL).

RESULTS

In Vitro and In Vivo Microfilm Degradation Studies

The Mₐ decreased gradually over the study period of 12 weeks, indicating the gradual degradation of the microfilms. The initial Mₐ was 155 to 170 kDa, and then it degraded by 85% of Mₐ approximately at the end of the study (Fig. 1A). The continuous decrease in the Mₐ also demonstrated the gradual degradation of the microfilms; this sort of degradation is referred to as “bulk” or homogeneous degradation. The degradation rate constant (λ) was 0.031 (day⁻¹) in vitro and 0.024 (day⁻¹) in vivo, indicating the microfilms degraded faster in vitro than in vivo (Fig. 1B).

In Vitro and In Vivo Drug Release Studies

There was an initial burst of 0.017 mg/d at day 3 in vitro. Subsequently, the amount of drug released reduced and became constant from the second week onwards, with a daily release amount of 0.004 mg/d. Comparatively, microfilms in vivo showed a steady daily release of approximately 0.002 mg/d without noticeable burst of release (Fig. 2A). The cumulative drug release profile revealed that PA-loaded microfilms achieved a steady, sustained release of drug in vitro and in vivo, although the in vivo drug release showed a slower release profile than that in vitro. The drug-loaded microfilms were almost exhausted of drug with 98.4% of release at 90 days in vitro, whereas there was 20.0% of loaded drug remaining in the microfilms after 90 days in vivo (Fig. 2B).

After insertions of PA-loaded microfilms subconjunctivally, PA concentrations were detected in the aqueous humor, with the levels of 76.7 ± 5.9, 70.3 ± 2.3, and 42.7 ± 4.1 ng/mL at 2, 4, and 12 weeks, respectively.

Clinical Evaluation

Slit-lamp examination revealed a mild degree of conjunctival vessels congestion around the margin of the microfilms at day 1 after insertion in either blank or PA-loaded microfilm group, but it resolved thereafter. The microfilms in both groups were visible at 12 weeks after insertions, without evidence of protrusion or dislocation (Figs. 3A–H). The mean total Hackett-McDonald ocular scores (0–10) assessing conjunctival congestion, swelling, and discharge were very low with the score of 0.63 ± 0.09, 0.07 ± 0.05, 0.05 ± 0.05, and 0 in the blank microfilm group, and 0.18 ± 0.08, 0.05 ± 0.05, 0, and 0 in the PA-loaded microfilm group at 1 day, 2, 4, and 12 weeks, indicating the microfilms elicited minimal inflammation at the insertion sites. The PA-loaded microfilm group had a significantly less total score at day 1 (P < 0.001, Fig. 3I), and this resulted from the significantly less conjunctival vessels congestion. There was no sign of infection, neovascularization, bleeding, or scarring at the insertion sites.

The ASOCT images showed that all the microfilms in blank and PA-loaded microfilm group were placed in good anatomic positions subconjunctivally without any evidence of dislocation or protrusion throughout the three months (Fig. 4).

Histologic and Immunohistochemical Studies

Histologic sections with hematoxylin and eosin (H&E) staining revealed very minimal inflammatory cells within the subconjunctival space through the three months. There was a mild degree of fibrotic capsule formation around the microfilm seen...
from 2 weeks onwards after insertion (Fig. 5). The mean thickness of the collagen capsule in blank and PA-loaded microfilm groups was 5.29 ± 0.05 and $3.68 \pm 0.05 \mu m$ at 2 weeks ($P = 0.80$), 7.12 ± 0.06 and $6.57 \pm 0.05 \mu m$ at 4 weeks ($P = 0.56$), and 6.49 ± 0.05 and $6.37 \pm 0.05 \mu m$ at 12 weeks ($P = 0.83$). The ratio of the length of microfilm surface lined by collagen to the entire length of microfilm surface for blank and PA-loaded microfilm groups was $81.33 \pm 0.83\%$ and $60.68 \pm 0.63\%$ at 2 weeks ($P = 0.001$), and $88.07 \pm 0.27\%$ and $85.55 \pm 0.47\%$ at 4 weeks ($P = 0.12$). The entire length of microfilm surface could not be determined at 12 weeks after insertions because the microfilms had degraded to fragments (Figs. 5C, 5F). The mean thickness of the microfilms in blank and PA-loaded microfilm groups was 98.8 ± 4.8 and $100.2 \pm 4.2 \mu m$ at 2 weeks, 98.3 ± 4.0 and $98.4 \pm 3.6 \mu m$ at 4 weeks, and 44.5 ± 2.6 and $42.8 \pm 2.7 \mu m$ at 12 weeks. Picrosirius red staining for collagen further confirmed the amount and extent of collagen encapsulation of the microfilms. When viewed with a polarized light, a thin layer of mature type I collagen fibers was observed around the microfilm from 2 weeks afterwards. The mean grading for the quantity of collagen in the blank microfilm group was 1.0 ± 0.0, 1.3 ± 0.3, and 1.6 ± 0.3 at 2, 4, and 12 weeks, respectively, and the mean grading for the PA-loaded microfilm group was 1.0 ± 0.0, 1.0 ± 0.0, and 1.3 ± 0.3 at 2, 4, and 12 weeks, respectively, indicating there was no excessive foreign body reaction and implant encapsulation in the subconjunctival space in groups (Fig. 6). Immunohistochemistry staining for CD11c cells and CD45 T cells showed minimal CD11c cells or CD45 T cells infiltrated around the microfilms in the subconjunctival space in either the blank or PA-loaded microfilm group, indicating there was only minimal inflammation after microfilm insertions (Figs. 7A-F, Supplementary Figs. S1A–S1F). There was a significant decrease in CD11c cells in the PA-loaded microfilm group compared to the blank microfilm group at 2 and 4 weeks after insertions ($P = 0.001$ and $P = 0.002$, Fig. 7G). There was no significant difference in the numbers of CD45 cells at 2, 4, and 12 weeks between the 2 groups ($P = 0.75$, $P = 0.46$, and $P = 0.76$; Supplementary Fig. S1G).

DISCUSSION

In our study, we have developed a drug delivery system that has shown good biocompatibility/surgical efficacy, and released prednisolone acetate in a sustained and controlled manner over a period of 90 days for use in small animal models of disease.

Several other sustained ocular drug delivery systems composed of either nonbiodegradable or biodegradable polymers have been reported in the literature. Polymeric systems have been used widely as implantable devices for...
controlled release of drugs in various organs. In ophthalmic use, PLGA copolymers are used more commonly, for example, incorporating timolol for intraocular pressure control, all-trans retinoic acid to reduce muscle adhesion in strabismus surgery, cyclosporin for treatment of uveitis, or 5-fluorouracil for antifibrotic effects. In our study, we used PLC copolymers instead. PLC is a relatively new copolymer that is made of poly(L-lactide) and poly(caprolactone), each of which has been approved by the Food and Drug Administration (FDA) in implantable products. Even though to our knowledge it has not been used previously in ophthalmology, its use has been reported in neurologic, orthopedic, and cardiovascular research. In comparison with PLGA, PLC is quite hydrophobic as the caprolactone ester bonds of the copolymer are not easily hydrolyzed. Because of this slower hydrolysis rate, PLC microfilms degrade more slowly and, therefore, achieve a longer release. Polymorphic structural difference in crystallinity also affects degradation rates. PLGA is an amorphous copolymer and is easier to be degraded than a PLC copolymer, which has semicrystalline structure. Our previous studies have confirmed that PLC microfilms degrade slower than PLGA microfilms in vitro and in vivo, which enables PLC to be a better candidate for a sustained ocular drug delivery system. Furthermore, PLGA copolymers have a higher glass transition temperature than PLC copolymers, which makes PLGA copolymers physically hard, while PLC copoly-
Mers appear to be soft and elastic.31,32 Hence, we chose the softer material for the microfilm fabrication as it minimizes the possibility of surgical trauma during the implantation procedure as well as of extrusion after the implantation.

Among the clinically available corticosteroid preparations, PA has the highest aqueous concentration within 1 to 2 hours after application and maintains high levels for 24 hours due to its high rate of ocular penetration.33–36 Moreover, the acetate analogue of prednisolone is more hydrophobic; hence, it has a higher tendency to stay attached to the PLC microfilms rather than be released within a short period of time. Therefore, we chose PA as the loading drug in our study. We detected PA concentrations in the aqueous humor with a steady level at 76.7 and 70.3 ng/mL at 2 and 4 weeks, which decreased to 42.7 ng/mL at 3 months. The trend of changes in PA concentrations in the aqueous humor corresponded to the drug release in vitro and in vivo. McGhee et al. reported that a mean peak concentration of 669.9 ng/mL was attained within 2 hours after applying 1 drop 1\% PA eye drops in patients undergoing routine cataract extraction, and the drug levels decreased gradually to 99.5 ng/mL at 12 hours and 28.4 mg/mL at 24 hours.34 With regard to the drug delivery system, the amount of loaded drug is proportional to the size of the microfilms, and the size of the microfilms in our study was limited to the small eyeball of the rats. This accounts for our lower PA levels in the aqueous humor compared to that reported by McGhee et al.34 We believe that future development of larger microfilms with higher PA loading concentration will equate to higher aqueous humor concentrations similar to those seen in patients following topical eye drops, since the smaller 2 mm diameter microfilms used in small animal models already have provided a PA concentration at 70 to 77 ng/mL in aqueous.

In our study, we demonstrated that PLC blank microfilms have good biocompatibility with minimal inflammatory and fibrotic reaction, confirmed by clinical observation, and histologic and immunohistochemical studies, which were consistent with the results in our previous study using a rabbit model.30 We also found that PA-loaded microfilm group had significantly less collagen encapsulation at 2 weeks, and less CD11c infiltration around the microfilms at 2 and 4 weeks in comparison with the blank microfilm group. It is well known that corticosteroids possess anti-inflammatory and anti-fibrotic actions.31–37 Our results indicated that our PA-loaded microfilms may have its applications to the clinical scenarios in which inflammation or fibrosis needs to be avoided.

Figure 5. Histologic sections with H&E staining of blank (A–C) and PA-loaded (D–F) microfilms at 2 (A, D), 4 (B, E), and 12 (C, F) weeks after insertions. The mean thickness of the collagen capsule around the microfilm was measured (G). There was a significant reduction of the ratio of the length of microfilm surface lined by collagen to the entire length of microfilm surface in the PA-loaded microfilm group at 2 weeks (H). ***$P=0.001$. #The ratio could not be determined as the entire length of microfilm surface could not be determined at 12 weeks because the microfilms had degraded to fragments). Asterisks indicated the implanted microfilm. Original magnification: ×100. Scale bar: 100 μm.
The microfilm degradation rate and the drug release rate in vivo were slightly slower than those in vitro. This may be due mainly to the relative confined subconjunctival space in the rat’s eye, such that the fluid surrounding the implanted microfilms was comparatively less than that in the in vitro setting, where the microfilms were bathed in PBS. In contrast, there was minimal “bathing” environment for the microfilms in the rats’ subconjunctival space, that is, the released drug is not cleared fast, leading to some drug accumulation in vivo in the space surrounding the microfilms, and this may retard further release of PA from the microfilms. In the in vitro situation, there is a large excess of water present, which avoids this drug accumulation around the microfilms. In the terminology used in drug release studies, the “sink” condition is not maintained in vivo compared to in vitro, and hence there is slower release of drug in vivo.

Polyhydroxyesters, including PLC copolymers, may have two different modes of degradation: bulk degradation and surface erosion. In the bulk degradation mode, also called the homogeneous degradation mode, the polymers degrade slowly without appreciable volume or size loss until the product becomes water soluble and leaches out of the matrix, when volume or size change becomes detectable. In the surface erosion mode, also called heterogeneous degradation mode, there is a continuous decrease in volume or size as polymers degrade at the surface first, followed by dissolution of the surface layer. In our study, the microfilms exhibited bulk degradation because the M_w and M_n decreased gradually throughout the study period, but no changes in the microfilm dimension or thickness (as seen in the histologic study) were observed during the initial 4 weeks. Furthermore, we also have examined the effect of PA loading onto microfilms, and we noted that blank and PA-loaded microfilms demonstrated quite similar degradation profiles (Supplementary Fig. S2), indicating PA loading did not affect the degradation results of microfilms.
The dilemma in using corticosteroids in a drug delivery system is the ability to reverse unwanted steroid related side effects, for example, elevation of intraocular pressure, exacerbation of bacterial and viral infection, and posterior subcapsular cataract formation. In terms of reversing the corticosteroid effects due to its adverse reaction, it would be a simpler procedure to remove the microfilm from the subconjunctival space, compared to removing implanted devices (biodegradable or not) from the anterior chamber or vitreous cavity, or with the use of suspensions of nanoparticles as a drug delivery system for corticosteroids.

In conclusion, we have demonstrated the biocompatibility, feasibility, and desirable drug release profiles of the prednisolone acetate-loaded PLC microfilms in vitro and in vivo for use in small animal models of disease. It delivers a sustained and sufficient drug level, which meets clinical needs more efficiently, and it can be implanted subconjunctivally through a simple procedure. As corticosteroids have been used in a broad spectrum of ophthalmic inflammatory conditions, the PA microfilm provides a promising alternative to conventional eye drops.

Acknowledgments

Supported by the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Programme (NMRC/TCR/002-SERI/2008) and administered by the Singapore Ministry of Health’s National Medical Research Council. The authors alone are responsible for the content and writing of the paper.

Disclosure: Y.-C. Liu, None; Y. Peng, None; N.C. Lwin, None; T.T. Wong, P; S.S. Venkatraman, P; J.S. Mehta, P

References

