Ocular Inflammation and Corneal Permeability Alteration by Benzalkonium Chloride in Rats: A Protective Effect of a Myosin Light Chain Kinase Inhibitor

Marie Thérèse Droy-Lefaix,¹ Lionel Bueno,¹ Philippe Caron,¹ Eric Belot,² and Olivier Roche²,³

¹Unité de Neurogastroentérologie INRA · 180, Chemin de Tournefeuille, Toulouse, France
²Service d’ophthalmologie, Hôpital Necker Enfants Malades, APHP, Faculté Paris Descartes, Paris, France
³Université Paris Descartes · Sorbonne Paris Cité, Paris, France

Correspondence: Olivier Roche, Université Paris Descartes · Sorbonne Paris Cité, Paris, France; oph.roche@free.fr.
Submitted: May 14, 2012
Accepted: March 7, 2013
Citation: Droy-Lefaix MT, Bueno L, Caron P, Belot E, Roche O. Ocular inflammation and corneal permeability alteration by benzalkonium chloride in rats: a protective effect of a myosin light chain kinase inhibitor. Invest Ophthalmol Vis Sci. 2013;54:2705–2710. DOI:10.1167/iovs.12-10193

PURPOSE. The aim of this study was to evaluate the interest of an ophthalmic eyedrop preparation containing a myosin light chain kinase (MLCK) inhibitor, ML-7, in the treatment of ocular surface. The local protective effect on the inflammation and the increase of corneal permeability induced by benzalkonium (BAK) was evaluated.

METHODS. An ocular instillation of 10 μL BAK at a concentration of 0.1% in PBS was performed on rats. The eyes were rinsed with sterilized water, 10 minutes after BAK preceded by instillation at T = −24, −12, and −0.5 hours of 10 μL of ML-7: 100 μg (10 μL) into a gel form vehicle. All animals were sacrificed 6 hours after BAK instillation. The eyes were isolated for study in a masked manner. The ocular surface inflammation was assessed by measuring the inflammatory cell infiltration by a histologic quantitative analysis and for total ocular myeloperoxidase (MPO) activity. The tight junction permeability was tested.

RESULTS. Instillation of 0.1% BAK increased the inflammation of the eye. The quantitative analysis showed an increase in the number of eosinophil and neutrophil polynuclears, and MPO activity. Pretreatment with ML-7 reduced inflammation (P < 0.05). The vehicle alone produced no notable effects. BAK instillation also thickened the fluorescent corneal front on frozen sections, indicating an increase of tight junction permeability. Pretreatment with ML-7 suppressed BAK-induced alterations of paracellular permeability while the vehicle had no visible effects.

CONCLUSIONS. Our study indicates that the inhibition of corneal cytoskeleton contraction by an MLCK inhibitor prevents BAK-induced ocular inflammatory response, and that ML-7 may be a new and original preparation in the treatment of ocular surface pathologies.

Keywords: ocular surface, dry eye, benzalkonium chloride, inflammation, paracellular permeability, tight junction, actin, myosin, MLCK, ML-7

Dry eye is an ocular surface disorder with a complex interplay of aggressive agents.¹ The anterior segment of the eye, the corneal and conjunctival epithelia, protects the eye against external aggressors, the ocular surface being a transitional mucosa between the deep ocular medium and the external environment. In fact, this epithelium is a competitive barrier between fluid loss and penetration of pathogens. It also protects the eye from abrasions.² To be effective, the cells constituting this epithelium must adhere tightly to each other and also must adhere to subjacent cellular components. Considering the vulnerable position of the epithelium at the external surface of the eye, the response of the epithelium to any aggressor is immediate and effective.²

This ocular epithelium is the only site of exchange between the external medium of the eye and the internal medium. Water and electrolyte transport of small molecules use a transcellular route. The absorption of large molecules, and the passage of antigens and toxins occur through the paracellular route at the level of tight junctions (TJs) located between epithelial cells.³⁻⁷ These TJs form a paracellular seal between the lateral membranes of adjacent cells. They are composed of at least three families of transmembrane proteins (occludins, claudins, and adhesion proteins) and a cytoplasmic plaque consisting of many different proteins that form large complexes. The transmembrane protein mediates cell adhesion, and constitutes the intermembrane and paracellular diffusion barrier. The cytoplasmic plaque of TJs is formed by different types of proteins that include adaptors, such as the zonula occludens (ZO) proteins and the proteins that contain PDZ domains, as well as regulatory and signaling components.⁸ There is a high density of cytoskeletal actin and myosin filaments, which surround the corneal epithelial cells near the apical region of the cellular borders at the level of the TJs.⁷ The disruption of the perijunctional actin-myosin filaments allows for an increase in the epithelial penetrability. Myosin light chain (MLC) contraction is regulated by the opposite actions of MLC phosphatase and MLC kinase (MLCK). MLC phosphorylation by MLCK triggers a contraction of the cytoskeleton (actin-myosin filaments) and subsequently an opening of intercellular TJs, giving rise to an increase of paracellular permeability favoring the entry of allergens and toxins.⁸⁻⁹

Corneal and conjunctival epithelia are always exposed to many aggressors, known to alter this competitive barrier. Different factors, such as temperature, humidity, ultraviolet...
Irradiation, bacteria, virus, fungi, allergens, contact lens wear, photorefractive surgery, or preservatives, can be responsible for corneal epithelial cell disruption linked to some alterations of corneal paracellular permeability. Some factors also can be determined genetically, such as the Gougerot-Sjögren syndrome.10,31

Furthermore, the permeability of the ocular surface epithelium can be altered by preservatives that are present in eyedrops or antisepctic substances, such as quaternary ammonium salts. Benzalkonium chloride (BAK), a component of all multidose eyelrop formulas, such as those used in the treatment of glaucoma, is known to induce the lysis of cell membranes at the ocular surface, even at very low doses.12–17

In addition, alterations of conjunctival and corneal permeability can occur after a trauma to the ocular surface, during the healing phases. Consequently, alterations of the anterior eye segment paracellular permeability result in acute or chronic dehydration of the ocular surface.18

This alteration of the epithelial TJs also can lead to sensitization due to the entry of microorganisms, allergens, or a chemical molecule, responsible for allergic and inflammatory phenomena often accompanied by pain leading to a chronic pathology.19

Therefore, the purpose of our study was to determine the protective effect of a selective MLCK inhibitor, ML-7,20–22 on the inflammation and the increase of corneal permeability induced by BAK and its implication on the regulation of the paracellular permeability linked to MLCK activation, which provokes epithelial TJ opening. We specifically looked for the direct effect of this MLCK inhibitor on the corneal barrier function.

**Methods**

**Chemicals**

ML-7, an MLCK inhibitor, was obtained from Sigma Aldrich Chimie (L’Isle D’Abeau Chesnes, France). ML-7 is a 1-(5-iodonaphthalene-1-sulphonyl) - 1H-hexahydro-1, 4-diazepine.

**Animals and Procedures of Benzalkonium Chloride and ML-7 Administration**

Four groups of male Wistar rats (Janvier, Le Genest St Isle, France), weighing between 300 and 350 g, were used, as well as BAK + sodium carmellose, BAK + ML-7, PBS + sodium carmellose, PBS + ML-7; PBS and sodium carmellose being the solvents for BAK and ML-7, respectively.

The rats were housed in polycarbonate cages with lights (12/12 hour cycle) set at a temperature of 20°C to 22°C. The rats were fed with standard pellets (Safe 003, Epinay sur Orge, France). All procedures were performed in accordance with the relevant recommendations for animal care according to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. The animals received a local application of ML-7 (Sigma Aldrich Chimie), 24 hours, 12 hours, and 30 minutes before chemical induction of ocular inflammation. Thus, each eye was treated with 100 µL ML-7 in 10 µL eyedrop solution (sodium carmellose 4 mg/0.4 mL) or with 10 µL unmodified eyedrop solution.

**Inflammation Induction**

At 30 minutes after the third application of ML-7 or of the unmodified eyedrop solution, each eye was treated with 10 µL 0.1% benzalkonium chloride (Sigma-Aldrich, Steinheim, Germany) in PBS or 10 µL unmodified PBS. After 10 minutes, the eyes of all the rats were rinsed with 250 µL sterile water.

**Eye Excision**

At 6 hours after the application of BAK or PBS, the animals were anesthetized with pentobarbital (80 mg/kg intraperitoneally [IP]; CEVA, Libourne, France) and sacrificed by decapitation. The eyes then were enucleated and frozen immediately or after surface biotinylation (TJ permeability test). All observations were performed in a masked manner.

**Measurement of Polynuclear Eosinophil Infiltration**

The polynuclear eosinophil leukocytes were stained with Direct Red and counted in the venous plexus region of the sclera. Immediately after excision, the eyes were embedded in a protective tissue freezing medium (Tissue Tek OCT compound; Sakura Finetek, Inc., Torrance, CA), frozen in liquid nitrogen, and stored at −80°C. Then, 6 µm thick slices were prepared with a cryostat and fixed in cold acetone for 10 minutes. After being dried, the slices were rehydrated by successive baths in toluene (5, 5, and 2 minutes), then in a 100% ethanol solution (5 and 2 minutes), a 95% ethanol solution (5 and 2 minutes), and a 50% ethanol solution (2 minutes). The sections then were bathed for 20 minutes in a staining solution of 0.03% Sirius red in 50% ethanol (Direct Red 75 dye content 30%; Sigma-Aldrich), rinsed with running water for 5 minutes, and mounted in an aqueous medium (glycerol/PBS, 50/50 vol/vol).

The eosinophils, bright pink stained on an illuminated background, were counted in the venous plexus region of the sclera under a Nikon Eclipse 90 I microscope equipped with a Nikon DXM1200F digital camera (both from Nikon Instruments Inc., Melville, NY). The area of the zone to be counted was determined with Nikon Lucina image analysis software (release 4.8; Nikon Instruments Inc.) and counts were expressed as the number of eosinophils per mm².

The results obtained for the four experimental groups were compared using a one-way ANOVA, followed by a Bonferroni multiple comparison test with statistical significance set at P < 0.05.

**Measurement of Polynuclear Neutrophil Infiltration**

Neutrophil polynuclear cells were specifically labeled by immunocytochemistry using an antymyeloperoxidase (MPO) monoclonal antibody as primary antibody, a horseradish (HRP)-conjugated secondary antibody, and an HRP-diaminobenzidine (DAB) reaction as a staining step.

The cold acetone-fixed sagittal frozen sections (6 µm thick) first were incubated with hydrogen peroxide (0.6% in methanol) during 30 minutes to inhibit endogenous peroxidases. Nonspecific linking sites were saturated by a solution of normal goat serum (2% in PBS–Tween–1% BSA) during 10 minutes. Sections then were incubated with primary anti-MPO antibody (IgG1 Mouse Monoclonal [8F4] to MPO; Abcam, Cambridge, MA), 2000-fold diluted in TWEEN–PBS–1% BSA, overnight, 4°C.

After having rinsed with Tween-PBS, incubation with secondary antibody (stabilized goat anti-mouse HRP-conjugated; Pierce, Rockford, IL) (2000-fold diluted in TWEEN–PBS–1% BSA) was performed for one hour at room temperature.

Sections then were incubated with an HRP-Chromagen substrate solution (3,3′-DAB kit; MP Biomedicals, Aurora, OH) for 5 minutes at room temperature.
Sections were counterstained with Mayer’s hematoxylin (20 seconds), dehydrated, and mounted in Depex medium. Counting was done using a Nikon DXM1200F digital camera (Nikon Instruments Inc.) as with eosinophils.

**Measurement of TJ Permeability – Surface Biotinylation**

The permeability of TJs in the cornea was evaluated by biotinylation of surface proteins. The chosen biotinylation reagent was water-soluble and contained an aminocaproyl spacer group, which lowered steric hindrance during avidin coupling. Immediately after excision, the eyes were incubated for 30 minutes at room temperature with gentle stirring in a solution containing sodium biotinamidohexanecarboxylate and 3-sulfo-N-hydroxysuccinimide at 1 mg/mL in PBS (Sigma-Aldrich). The eyes then were rinsed three times with PBS, embedded in a protective tissue freezing medium (Tissue Tek OCT compound; Sakura Finetek, Inc.), frozen in liquid nitrogen, and finally stored at −80°C.

Six μm thick slices were prepared with a cryostat and fixed in cold acetone for 10 minutes. After being dried out, the slices were labeled for 30 minutes in the dark with avidin D-FITC (Vector Laboratories, Inc., Burlingame, CA) 250-fold diluted in PBS-Tween containing 1% BSA, then rinsed three times for 5 minutes with PBS-Tween in the dark. The slices then were mounted in a fluorescent medium (Cappel fluorostab embedding medium; MP Bomedicals, Inc., Aurora, OH) and examined under a Nikon Eclipse 90 i fluorescence microscope equipped with a Nikon DXM1200F digital camera (both from Nikon Instruments Inc.). The images were analyzed with the Nikon Lucia image analysis software (release 4.8; Nikon Instruments Inc.). As no significant differences in corneal thickness were observed between the different groups (102 ± 6, 110 ± 9, 115 ± 13, and 124 ± 8 μm for BAK + sodium carmellose, BAK + ML-7, PBS + sodium carmellose, and PBS + ML-7 groups, respectively), the depth of fluorescence labeling reflected the permeability of external corneal epithelial TJs to the biotinylation reagent.

**Measurement of MPO Activity**

The activity of MPO, which is found in polymorphonuclear neutrophil granules, was assessed according to the method of Bradley et al. \(^\text{23}\) Samples of the eyes were suspended in a potassium phosphate buffer (50 mM, pH 6.0) and homogenized in ice. Three cycles of freeze–thaw were undertaken. Suspensions then were centrifuged at 10,000 g for 15 minutes at 4°C. Supernatants were discarded and pellets were resuspended in hexadecyl trimethylammonium bromide buffer (HTAB, 0.5% wt/vol, in 50 mM potassium phosphate buffer, pH 6.0). These suspensions were sonicated on ice, and centrifuged again at 10,000 g for 15 minutes at 4°C. The supernatants obtained were diluted in potassium phosphate buffer (pH 6.0) containing 0.167 mg mL\(^{-1}\) of O-dianisidine dihydrochloride and 0.0005% of hydrogen peroxide. Myeloperoxidase from human neutrophils (0.1 units per 100 μL) was used as standard. The
kinetic changes in absorbance at 450 nm, every 10 seconds over 2 minutes, were recorded with a spectrophotometer (spectre de masse GC-MSn, Thermo Polaris Q; Thermo Fisher Scientific Inc., Waltham, MA). One unit of MPO activity was defined as the quantity of MPO degrading 1 μmol hydrogen peroxide min⁻¹ ml⁻¹ at 25°C. Protein concentration was determined with a commercial kit using a modified method of Lowry (Detergent Compatible Assay; Bio-Rad, Marnes la Coquette, France). MPO activity was expressed as units per gram of protein.

Statistical Analysis

Data were presented as means ± SEM. To compare the groups, we used the Student’s impaired t-test and the Bonferroni multiple comparison test. Statistical significance was accepted at $P < 0.05$.

RESULTS

Effect of Local Application of ML-7 on Polynuclear Infiltration Induced by Corneal Instillation of BAK

The instillation of 10 μL 0.1% BAK in the eye led to a highly significant increase in the number of inflammatory cells as determined by the significant increase of Direct Red stained polynuclear eosinophils in the venous plexus region of the sclera, showing evidence of a severe ocular inflammation (Fig. 1).

Figure 2. Effect of ML-7 on the number of MPO-immunoreactive cells (neutrophils) accumulated in the sclera venous plexus following benzalkonium chloride treatment in rats (mean ± SEM, $n = 8$). *$P < 0.05$, significantly different from BAK. +$P < 0.05$, significantly different from Vehicle.

Figure 3. Effect of ML-7 on the increase of permeability to the fluorescent dye induced by BAK. The application of 10 μL BAK (0.1%) in the eye led, after 6 hours, to an opening of corneal epithelial TJs as manifested by deeper penetration of the fluorescence and by its diffusion. The influence of BAK was inhibited by ML-7, which suppressed this increase in the diffusion and thickening of the fluorescent zone.
BAK instillation. The vehicle (carbomer gel) had no notable
against this alteration of paracellular permeability after 0.1% showing that ML-7 in a carbomer gel significantly protected
BAK instillation (Figs. 3, 4).

against this alteration of paracellular permeability induced by

Dry eye syndrome is a chronic lack of sufficient lubrication and
moisture of the ocular surface linked to inflammations affecting
the cornea and conjunctiva.

Among the aggressors responsible for dry eyes, such as
environmental factors, exposure of the ocular surface to
preservatives (antiseptic substances) provokes significant
disorders. The most well known preservative salts on the
market are the quaternary ammonium salts, such as BAK,
which is an ingredient of multidose eyedrops approved for the
treatment of glaucoma. The said preservatives, by inducing
free radical release24 and apoptosis of ocular cells,24,25 reach
the corneal epithelium and stimulate the infiltration of
inflammatory cells into the conjunctiva.16,26,27 Severe damages
to ocular surface, such as ulcers, large epithelial defects,
and neovascularizations, can occur.28 The administration of
BAK induces changes similar to the dry eye syndrome in
humans accompanied by a decrease in the amount of tears, an
increase of the corneal fluorescein, and the rose Bengal score.25
BAK also can affect cell membrane permeability,
causing lysis of cell contents and allowing vital substances to
escape.29

It is now well demonstrated that BAK accelerates the
desquamation of corneal epithelium cells with a concomitant
depletion of intracellular ATP. Among the varied effects of ATP
depletion, phosphorylation of regulatory light chain of myosin
II (MLC) has been reported and it has been demonstrated
clearly that the exposure of corneal epithelial cells to BAK
leads to MLC phosphorylation,30 which contracts the cytoskel-
eton of epithelial cells, thus, breaking down the corneal barrier
integrity. Similar effects are noted in the presence of histamine.30
This barrier loss contributes to the propagation and exacerbation of the inflammation.31

Furthermore, aggressors, such as BAK, can cause a decrease
in the expression of the zonula occludens protein (ZO-1), a key
compound of TJs,32 or alter the organization of the actin
cytoskeleton in the apical region of the cell.32

Our results confirmed that 0.1% BAK administration causes
side effects on the corneal membrane through MLC phosphory-
lization. BAK 0.1% significantly provokes eye inflammation. We
observed an increase of MPO immunoreactivity in the sclera
venous plexus. We also noted a significant increase in the
number of infiltrated eosinophil polymorphonuclears. Pretreatment
of rat eyes with ML-7, an inhibitor, significantly reduces the
number of infiltrated neutrophil and eosinophil polymorphonuclears
(\(P < 0.05\)).

Concomitantly to the corneal inflammation, following 0.1%
BAK administration, we observed a significant increase of the
paracellular permeability in the corneal epithelium, as demon-
strated on frozen sections of rat cornea after biotinylation and
amplification by avidine fluorescein. This increase of para-
cellular permeability is prevented by ML-7, which attenuates
MLCK activity, suggesting that it limits the entry of allergens
and pathogens.9 Consequently to this, ML-7 limits the ocular
inflammation response, as seen previously, at the level of the
gut colonic epithelium.9

Furthermore, similar protective effects of ML-7 are de-
scribed using ethanol as a barrier aggressor. ML-7 treatment
attenuates the ethanol-mediated increase of paracellular
permeability and MLCK activity.33

In conclusion, ML-7, an MLCK inhibitor, by preventing the
deleterious effects of BAK preservatives on corneal cytoskel-
eton and the consecutive inflammation, may be a new and
original preparation in the treatment of ocular surface
pathologies, such as dry eye.

Acknowledgments

Disclosure: M.T. Droy-Lefaix, None; L. Bueno, None; P. Caron,
None; E. Belot, None; O. Roche, None

References


3. Göbbels M, Breitbach R, Spitznas M. Barrier function of the
corneal epithelium of contact lens patients. Fortschr Opthalmol.
1990;87:646–648.


16. Liang H, Baudouin C, Pauly A, Brignole-Baudouin F. Conjunctival and corneal reactions in rabbits following short and repeated exposure to preservative free taluprofen, commer-


