Thymosin-β₄ Inhibits Corneal Epithelial Cell Apoptosis after Ethanol Exposure In Vitro

Gabriel Sosne,¹,² Atif Siddiqi,¹ and Michelle Kurpakus-Wheater¹

PURPOSE. The purpose of this study was to determine the effect of thymosin beta 4 (Tβ₄) treatment on human corneal epithelial cells exposed to ethanol in vitro. The efficacy of Tβ₄ in preventing mitochondrial disruption and in inhibiting caspase-mediated apoptosis was examined.

METHODS. Nontransformed human corneal epithelial cells (HCECs) at passage 4 were untreated or treated with ethanol (20% for 20 seconds) or a combination of ethanol and Tβ₄. The cells were allowed to recover from ethanol treatment for 24 hours. Mitochondrial membrane integrity and the release of cytochrome c to the cytoplasm were assessed using microscopy, Western blot, and ELISA. Bcl-2 expression and cell proliferation were measured using ELISA. Colorimetric activity assays were completed for caspase-2, -3, -8, and -9.

RESULTS. Tβ₄ treatment decreased deleterious mitochondrial alterations, significantly decreased cytochrome c release from mitochondria, and increased Bcl-2 expression in ethanol-exposed human corneal epithelial cells. In ethanol-exposed corneal epithelium Tβ₄ treatment inhibited caspase-2, -3, -8, and -9 activity, with caspase-8 showing the most significant inhibition. Tβ₄ treatment resulted in no significant effect on the proliferation of human corneal epithelial cells after ethanol exposure.

CONCLUSIONS. Tβ₄ plays an antiapoptotic role under conditions of epithelial cell challenge with an external stress such as exposure to ethanol. Tβ₄ may function as an antiapoptotic agent by inhibiting the release of cytochrome c from mitochondria and by suppressing the activation of caspases. (Invest Ophthalmol Vis Sci. 2004;45:1095–1100) DOI:10.1167/iovs.03-1002

The most common vision disorder in the United States is some type of refractive error. Accordingly approximately 120 million people require eyeglasses or contact lenses for vision correction.¹ Surgical options for correcting corneal refractive disorders include, but are not limited to, photorefractive keratectomy (PRK), laser in situ keratomileusis (LASIK), and laser-assisted subepithelial keratectomy (LASEK). The stated advantage of LASEK is reduction in postoperative pain, faster visual rehabilitation, and lessened probability of corneal haze.² LASEK is based on the creation of an epithelial flap with 20% ethanol.³ After laser ablation of the anterior stroma, the flap is repositioned over the corneal bed.² Alcohol is cytotoxic, and so a major concern with the use of ethanol in the cornea is continued viability of the epithelium after the procedure as it relates to wound healing and visual rehabilitation. This is especially relevant to LASEK because the epithelial flap covers the stromal surface after ablation. Measurements of the percentage of viable cells in an ethanol-treated corneal epithelial flap in human cadaveric eyes varied between 40% and 80%.⁴,⁵ In immortalized human corneal epithelium, cell survival after ethanol treatment is highly dependent on exposure time and on the diluent used to prepare the 20% solution.⁶ TUNEL-positive cells, indicative of apoptotic cell death, is evident at 8 and 24 hours after treatment in vitro with 20% ethanol for 20 or 40 seconds. This suggests that even a brief epithelial exposure to alcohol can activate apoptosis in the cornea.

Although evidence for ethanol-induced apoptosis in corneal epithelial cells has been reported, no further studies have been performed to identify mechanisms by which this may occur. Caspases are intermediates in cellular apoptotic cascades.⁶ Caspases-2, -8, -9, and -10 are termed initiator caspases, and function upstream in activating the effector caspases. Caspase-8 is the major caspase that initiates death-receptor-mediated apoptotic cascades.⁷,⁸ Caspase-9 is a major caspase for cytochrome c-mediated apoptotic mechanisms thought to be initiated by extracellularly applied stresses.⁹,¹⁰ The effector, or executioner caspases include caspase-3, -6, and -7,¹¹,¹² Ethanol has been reported to induce apoptosis through caspase-mediated pathways in T-cells,¹³ neurons,¹⁴ Leydig cells,¹⁵ and liver hepatocytes.¹⁶ Although it has been shown in several nonocular tissues that ethanol induces caspase-mediated apoptosis, the expression of caspases and their importance in corneal epithelial cell death processes after clinical application of ethanol have not been studied.

Thymosin β₄ (Tβ₄) is a 4.9-kDa protein¹⁷ originally thought to function primarily as a G-actin–sequestering protein.¹⁷⁻²⁰ However, in addition, topical application of Tβ₄ accelerates corneal wound healing after heptanol debridement in vivo, and stimulates corneal epithelial cell migration in vitro.²¹ It stimulates the production of the extracellular matrix adhesion molecule laminin-5 in human conjunctival²² and corneal²³ epithelial cells. Although the literature contains a few studies on how Tβ₄ may prevent apoptotic cell death,²⁴,²⁵ nothing is known about its effects on corneal epithelial cell apoptosis.

We hypothesize that Tβ₄ treatment will significantly enhance epithelial cell survival in corneas receiving LASEK by inhibiting the initiation of apoptosis. In this study, we provided evidence to support this hypothesis by demonstrating that cells treated with ethanol and Tβ₄ compared with human corneal epithelial cells (HCECs) treated with ethanol alone exhibited decreased mitochondrial membrane alterations, decreased release of cytochrome c from mitochondria, and enhanced expression of Bcl-2. In addition, Tβ₄ suppresses the activity of caspases. Because survival of the epithelial cells contained in the flap is critical to uneventful postoperative healing and

From the Departments of ¹Anatomy and Cell Biology and ²Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan.

Supported by Grants R01 EY12282 (MK-W), K08 13412 (GS), and P30 EY0068 from the National Eye Institute. GS is a recipient of the Career Development Award from Research to Prevent Blindness.

Submitted for publication September 10, 2003; revised December 16, 2003; accepted January 5, 2004.

Disclosure: G. Sosne, RegeneRx (F); A. Siddiqi, None; M. Kurpakus-Wheater, None.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be marked “advertisement” in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Corresponding author: Michelle Kurpakus-Wheater, Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield Avenue, 8263 Scott Hall, Detroit, MI 48201; mkurpak@med.wayne.edu.

Copyright © Association for Research in Vision and Ophthalmology 1095

Downloaded From: http://iovs.arvojournals.org/pdftoaccess.ashx?url=/data/journals/iovs/933595/ on 06/24/2017
successful vision correction after LASEK, our results suggest that Tβ4 may be useful therapeutically after laser vision correction.

Methods

HCEC Culture
Nontransformed HCECs frozen at passage 3 were purchased from Cascade Biologics (Portland, OR). The cells were rapidly thawed, plated, and maintained in serum-free culture medium containing human corneal growth supplement, as suggested by the manufacturer (Epilife; Cascade Biologics). HCECs were used for experiments at passage 4. Tβ4 was a gift from Regeneron (Bethesda, MD) and was used at one concentration of 1000 ng/mL, because this concentration has been shown to be optimum for ocular surface epithelial cells in our previous studies.21-25

Morphologic Detection of Apoptosis
HCECs were plated in wells of a four-chamber microscope slide (Laboratory-Tek chamber slides; Sigma-Aldrich, St. Louis, MO). Cells in one chamber were treated with 200 μM hydrogen peroxide for 2 hours to induce apoptosis26-27 and then replenished with serum-free medium. As a control, cells in the second chamber were not treated. Cells in the third chamber were treated with 20% ethanol in saline for 20 seconds, washed three times in culture medium, and replenished with fresh serum-free medium. Cells in the fourth chamber were treated with 20% ethanol in saline containing 1000 ng/mL Tβ4 for 20 seconds, washed three times in culture medium, and replenished with medium containing 1000 ng/mL Tβ4. Four, 8, and 24 hours after the treatments (only 24-hour results are shown), unfixed cells were incubated with 1 mL of a cationic fluorescent reagent (MitoCapture; Calbiochem-Novabiochem Corp., San Diego, CA) according to the protocol of the apoptosis detection kit. The cells were observed immediately using the rhodamine channel of a fluorescence microscope (Axiophot; Carl Zeiss Meditec, Dublin, CA). Images were then digitized and archived (Axio- cam; Carl Zeiss Meditec).

Six images from each condition were used to quantify the number of viable cells. Viable cells were scored as having intact mitochondria visualized by the uptake of the reagent. For each treatment, the number of cells with viable mitochondria was divided by the total number of cells in the field, to calculate the percentage of viable cells. The average percentage of viable cells ≥ SEM was graphed. Statistical analysis was performed with the unpaired Student’s t test with significance set at P < 0.05.

Western Blot Analysis
HCECs at approximately 90% confluence were untreated or treated with hydrogen peroxide, ethanol, or ethanol and Tβ4, as described. HCECs were lysed in preparation buffer (10 mM Tris-HCl [pH 7.5], 0.3 M sucrose, 10 μM aprotinin, 10 μM pepstatin A, 10 μM leupeptin, and 1 mM phenylmethylsulfonyl fluoride [PMSF]), according to the procedure given by the manufacturer of the ELISA kit (Cytochrome c ELISA kit; MBL International Corp., Watertown, MA). The lysates were centrifuged for 60 minutes at 10,000g, and supernatants were collected as the cytosolic fraction. Cytosolic fraction samples were then used for ELISA, to determine the concentration of cytochrome c in nanograms. To standardize for differences in concentration due to differences in cell number of the original cultures, total protein concentration in the cytosolic fractions was measured by using the method of Henkel and Bieger.28 The ELISA was repeated in triplicate (n = 3 per replicate) to calculate the average nanograms cytochrome c in cytosolic fractions per milligram of protein ± SEM. Statistical analysis was performed using the unpaired Student’s t test with significance set at P ≤ 0.05.

Bcl-2 ELISA
HCECs at approximately 90% confluence were untreated or treated with ethanol, ethanol and Tβ4, or 1000 ng/mL Tβ4 only, as described. HCECs were lysed in resuspension buffer (50 mM Tris, 5 mM EDTA, 0.2 mM PMSF, 1 μg/mL pepstatin, and 0.5 μg/mL leupeptin) according to the protocol of a bcl-2 ELISA kit (Oncogene). Antigen extraction agent was added to the lysates, as suggested, and the cells were incubated on ice for 30 minutes. The cells were centrifuged at 10,000g for 10 minutes and defined as cytosolic fractions, and the cleared lysates were used for ELISA. The ELISA was repeated in triplicate (n = 3 per replicate) to calculate the average cytoplasmic bcl-2 in U/mL ± SEM. The results of the analysis were within the sensitivity range of the ELISA kit (5–200 U/mL). Statistical analysis was performed with the unpaired Student’s t test with significance value of P ≤ 0.05.

Caspase Activity Assay
HCECs at approximately 90% confluence were treated with ethanol and Tβ4, or 1000 ng/mL Tβ4, as described. Caspase-2, -3, -8, and -9 activities were measured with colorimetric assays with the appropriate caspase-recombinant substrate (Sigma-Aldrich). HCECs were lysed on ice for 10 minutes in buffer containing 50 mM HEPES (pH 7.4), 5 mM CHAPS (3-[3-cholamidopropyl]dimethylammonio-2-hydroxy-1-propanesulfonate), and 5 mM dithiothreitol (DTT). Samples of lysate (50 μL) were pipetted into wells of a 96-well plate. One hundred microliters of assay buffer (20 mM HEPES [pH 7.4], 0.1% CHAPS, 5 mM DTT, and 2 mM EDTA), 5 μL of the appropriate caspase substrate (10 mM final concentration), and 45 μL distilled water were also added to each well. Negative controls contained all reaction components except for cell lysate. After 2 hours incubation at room temperature, detection was measured using a microplate reader at a 405-nm wavelength. Cell lysate was also used for total protein determination by the BCA method, and the microplate reader output corresponding to caspase activity was corrected for total protein. Caspase activity is reported as a percentage activity in HCECs treated with ethanol and Tβ4, compared with HCECs treated with ethanol only (arbitrarily set at 100%). Triplicate assays were performed (n = 6 per assay) to calculate the average percentage activity ± SEM. Statistical analysis was performed using the unpaired Student’s t test with significance set at P ≤ 0.05.

Cell Proliferation ELISA
HCECs were plated at 3000 cells/well in a 96-well microtiter plate and cultured in serum-free medium for 24 hours. Cells were untreated or...
treated with Tβ₄, ethanol, or ethanol and Tβ₄. After 20 hours of culture, 5-bromo-2′-deoxyuridine (BrdU) was added to each well to a final concentration of 10 μM. After 4 hours of incubation with BrdU (representing 24 hours of recovery time after ethanol treatment) the cells were fixed, and the DNA was denatured simultaneously with reagents supplied with a cell-proliferation ELISA kit (Roche Diagnostics, Indianapolis, IN). The cells were incubated with anti-BrdU peroxidase conjugate, washed, and incubated with color development substrate. The absorbance of the samples was measured at 450 nm wavelength (OD₄₅₀). The results of triplicate assays (n = 8 per replicate) are represented as mean optic density at 450 nm absorbance (OD₄₅₀) ± SEM. Statistical analysis was completed using the two-tailed unpaired Student’s t-test with P ≤ 0.05.

RESULTS

Effect of Tβ₄ on Ethanol-Treated HCECs: Morphologic Assessment of Apoptosis

In the studies described herein, nontransformed, early-passage HCECs were treated with 20% ethanol for 20 seconds, because this is a clinically and experimentally relevant protocol. We initially investigated how ethanol exposure affects the membrane potential of mitochondria in corneal epithelial cells by using a cationic fluorescent reagent (MitoCapture; Calbiochem-Novabiochem Corp.). Reagent uptake by mitochondria in healthy cells is visualized as punctate fluorescence throughout the cytoplasm. In contrast, apoptotic cells are incapable of accumulating the reagent in mitochondria due to membrane depolarization. Apoptotic cells are identified as lacking the punctate structures, but instead have diffuse cytoplasmic fluorescence.

Cells were monitored 4, 8, and 24 hours after ethanol treatment. Evidence of apoptosis was not appreciable at 4 hours, while at 8 and 24 hours, our observations did not differ. Because of this, we present only results at 24 hours after treatment. HCECs treated with hydrogen peroxide, a reagent known to elicit apoptosis, showed evidence of extensive death, because no cells had the punctate structures indicative of normal mitochondria (Fig. 1A). In contrast, untreated control HCEC cultures consisted of viable cells with the characteristic punctate labeling (Fig. 1B). HCECs treated with ethanol demonstrated a mixed population of viable and apoptotic cells after exposure (Fig. 1C). HCECs treated with ethanol and Tβ₄ also showed a mixture of viable and apoptotic cells, although in general more healthy cells were observed (Fig. 1D).

Quantitative analysis, as shown in Figure 1E, demonstrated that compared with untreated control cells, HCEC treatment with ethanol resulted in a significant decrease in viable cells (66% decrease, P < 0.0001). There was a similar significant decrease in viable cells in cultures treated with ethanol alone, compared with cells treated with ethanol and Tβ₄ (58% decrease, P = 0.0010). Although Tβ₄ could increase the number of viable cells in ethanol-treated cultures, it did not fully return levels to that of untreated control cells, because there remained a statistically significant decrease in viable cells treated with ethanol and Tβ₄ compared with the control cells (18% decrease, P = 0.0167).

Effect of Tβ₄ on Cytochrome c and Bcl-2 Expression in Ethanol-Treated HCECs

In addition to the disruption of mitochondrial membrane potential, apoptosis also triggered the release of cytochrome c from mitochondria to the cytoplasm. To provide additional evidence that Tβ₄ protects mitochondria from damage, we assayed cytochrome c release using immunoblot analysis and ELISA. The relative amount of cytochrome c in cytosolic and mitochondrial fractions of HCECs was determined semiquantitatively by Western blot analysis (Fig. 2). The ratios of cytosolic to mitochondrial IDV were used to calculate the percentage of cytochrome c that partitioned to the cytosolic fraction in each treatment. Correspondingly, 67% of cytochrome c was found in the cytosol in hydrogen-peroxide-treated HCECs, 34% in untreated controls, 75% in ethanol treated cells, and 45% in cells treated with ethanol and Tβ₄.

In a quantitative approach, cytochrome c concentration in cytosolic fractions was measured using a commercial ELISA (Fig. 3). Concentrations measured from the ELISA were corrected for total protein content of the samples to standardize for differences in cell number in the cultures. HCECs were treated with hydrogen peroxide to confirm that apoptosis correlates with an increase in cytosolic cytochrome c concentration. Compared with untreated control HCECs, cells exposed to ethanol demonstrated a significantly increased concentration of cytosolic cytochrome c (220% increase, P = 0.0007). In contrast, cytochrome c release from mitochondria
pared with ethanol only).

The major function of bcl-2 appears to be the inhibition of apoptosis-induced release of cytochrome c into the cytosol. Compared with control, cells treated with ethanol demonstrated significantly increased cytosolic cytochrome c ($P = 0.0007$). However, cells treated with ethanol and Tβ4 showed significantly decreased cytochrome c in the cytoplasm ($P = 0.0022$ compared with control, $P < 0.0001$ compared with ethanol only).

to the cytoplasm was significantly decreased in HCECs treated with ethanol and Tβ4 compared with cells treated with ethanol only (71% decrease, $P < 0.0001$) or compared with control cells (37% decrease, $P = 0.0022$).

The ability of Tβ4 to abrogate ethanol-mediated apoptosis was further studied by investigating bcl-2 protein expression (Fig. 4). The major function of bcl-2 appears to be the inhibition of apoptosis, and expression of bcl-2 promotes cell survival. In ethanol-treated HCECs, the concentration of cytosolic bcl-2 was not different from that of untreated control cells. In HCECs treated with ethanol and Tβ4, however, a significantly increased concentration of cytosolic bcl-2 was observed compared with cells treated with ethanol only (138% increase).

Effect of Tβ4 on Caspase Activity in Ethanol-Treated HCECs

Assays were completed to determine the effect of Tβ4 on caspase activity in ethanol-exposed corneal epithelial cells in vitro. Colorimetric activity assays were used to determine the relative activities of caspase-2, -3, -8, and -9. The data are presented in Figure 5 as the percent caspase activity in HCECs treated with ethanol and Tβ4 compared with cells treated with ethanol only. For all four caspases studied, cell treatment with Tβ4 resulted in a significant increase in cytosolic bcl-2 compared with HCECs treated with ethanol only (137% increase, $P = 0.0442$) or compared with untreated control cells (148% increase, $P = 0.0397$).

Effect of Tβ4 on Proliferation of Ethanol-Treated HCECs

To determine the effect of Tβ4 on cell proliferation after exposure to ethanol, we performed a colorimetric BrdU-incorporation ELISA (Fig. 6). HCECs treated with ethanol demonstrated significantly inhibited proliferation after 24 hours of recovery time compared with untreated control cells (49% decrease, $P < 0.0001$). Tβ4 did not positively affect mitotic activity, as proliferation did not differ between control and treated cells. In addition, HCECs treated with ethanol and Tβ4 showed significantly inhibited proliferation compared with control cells (61% decrease, $P < 0.0001$). Cell proliferation in HCECs treated with a combination of ethanol and Tβ4 was also significantly suppressed compared with ethanol-only treated HCECs (25% decrease, $P = 0.0004$).

DISCUSSION

After PRK and LASEK, it is important to preserve epithelial cell viability and integrity to achieve uneventful wound healing and optimal visual recovery. Dilute alcohol is frequently used for...
HCECs. Our results suggest that T\(_4\) cells demonstrate mitochondrial depolarization and cytoplasmic release to cytoplasm; however, they reported this to be a caspase-8 independent phenomenon. In contrast, the Fas/Fasl and caspase-8 apoptotic pathway is suggested to play a primary role in acute ethanol-induced liver apoptosis in mice.\(^{10,45}\) In gastric mucosa, ethanol resulted in the activation of caspase-3, -8, and -9. Pretreatment of cells with an inhibitor of caspase-8 suppressed the onset of cell death.\(^{46}\) The notion that ethanol induces apoptosis by different pathways depend-

ing on cell type is feasible, and further investigation is necessary to determine the precise roles of caspase-8, death ligands, mitochondrial changes, and caspase-9 in ethanol-induced apoptosis.

Nontransformed HCECs at passage 4 were used in the study described herein. Although our present report is limited to in vitro findings, the literature is replete with studies using cultured epithelial cells to reduce the number of animals used in preclinical evaluation of ocular toxicity of various substrates.\(^{47-51}\) Because culture conditions cannot substitute for the complex nature of reparative processes that occur in the eye in vivo, we realize the potential limitations of our findings. Nevertheless, our results indicating increased cell survival with T\(_4\) treatment after ethanol exposure support growing evidence that T\(_4\) may regulate the wound-healing response to clinical advantage.\(^{51,22,52,53}\)

T\(_4\) appears to suppress apoptosis in ethanol-exposed corneal epithelium but does not affect proliferation. Although it may seem surprising that suppressing apoptosis does not result in enhanced proliferation, one must realize that survival and proliferation are diverse cell processes. Although cell proliferation is one aspect of wound healing, cell migration and cell-extracellular matrix readhesion are vital as well. We have shown that T\(_4\) induces epithelial, but not keratocyte cell migration and increases the production of laminin-5, an extracellular matrix adhesion protein.\(^{21-23}\) An agent that promotes corneal re-epithelialization, wound healing, and cell survival after trauma or surgery without adverse side effects would be a major clinical advance. As the mechanisms of action of T\(_4\) on wound healing are not fully understood, based on the presented findings herein, future studies will be aimed at discerning the mechanisms by which T\(_4\) inhibits caspase activation and subsequent cellular apoptosis. Studies are also planned to examine how T\(_4\) may effect corneal epithelial-stromal interactions through cytokine and chemokine expression during the repair process after wounding. Elucidation of these mechanisms may provide new insights into the documented reparative properties of T\(_4\).

References

