A study of the DNA of dogfish corneal epithelium

Seymour Zigman, George Munro, and Sidney Lerman

Small Sephadex G-200 columns were employed to purify milligram quantities of DNA extracted from dogfish cornea epithelium with sodium dodecyl sulfate, and studies of the composition and physical properties were made. 3H thymidine and 125I deoxyuridine were incorporated into epithelial DNA under simple in vitro circumstances. The incorporation of thymidine depended upon the temperature and oxygen tension of the incubation medium.

The epithelium of the dogfish cornea is ideally suited for studies on the chemistry and metabolism of DNA. As shown in Fig. 1, approximately 12 layers of cells whose nuclei are rich in dark Feulgen-staining material (DNA) make up nearly half the thickness of the cornea. Furthermore, both the content and rate of synthesis of DNA in this tissue are greater than those of mammalian and fish corneas. This report summarizes recent chemical studies on dogfish cornea epithelial DNA and on the rate of incorporation of precursors into DNA under in vitro conditions.

Methods and materials

Corneal epithelium was scraped from the eyes of freshly killed dogfish with a scalpel. When used for chemical studies, large groups of whole epithelia were pooled and immediately frozen. These epithelia were later homogenized in several volumes of distilled water with a Dounce glass homogenizer and the $600 \times g$ sediment was extracted at 60° C. with 0.41 per cent sodium dodecyl sulfate in 0.9 per cent NaCl for one hour. After the denatured protein was precipitated by adjusting the NaCl concentration of the suspension to 1M and removed by centrifugation at 2,000 $\times g$, one volume of cold ethanol was added to the supernatant to precipitate the DNA. The RNA which always coprecipitated along with the DNA was removed after hydrolysis in 0.3M KOH by the process of gel filtration described in Results.

DNA was determined by the microindole technique of Ceriotti and RNA was determined by the orcinol procedure. The Lowry technique was used to determine protein and ultraviolet absorption was measured with a Beckman DU spectrophotometer.

Sedimentation rates were determined with a Beckman-Spinco Model E analytical ultracentrifuge at 20° C. and at a speed of 42,040 r.p.m. DNA base composition was obtained by the melting point determination described by Marmur and Doty, or by hydrolyzing the purified DNA with 70 per cent HClO$_4$ at 100° C. for one hour and then separating the resultant bases by descending paper chromatography with the isopropanol:HCI:H$_2$O (65:35:1) system.

For in vitro incubations, groups of six to eight epithelia were combined and promptly dropped
Results

The average wet weight of an adult dogfish corneal epithelium was found to be 22.5 mg, as compared with 42.5 mg of stroma (25 determinations). One whole epithelium contained 59 \(\mu \)g of DNA (average of 20) for a concentration of 0.26 per cent of the wet weight or 1 per cent of the dry weight. The RNA:DNA ratio was found to be 2.0 as compared to ratios of 3 and 4 found for rabbit and calf corneal epithelia, respectively.

Fig. 2 represents the elution pattern obtained when an 0.25 ml. sample containing 200 \(\mu \)g of epithelial RNA and 400 \(\mu \)g of DNA (treated with 0.3M KOH for 18 hours at 37\(^\circ\) C.) was filtered through a column of Sephadex G-200 (7 cm. \(\times \) 0.5 cm.) with 0.025M tris buffer (pH 7.4) as the suspending and elution medium. Each fraction collected contained 0.16 ml and the optical density at 260 nm was read for every third tube after a fivefold dilution with ELO. With this procedure, 98 per cent of the DNA applied to the column was recovered in the first 4.0 ml of eluent, while the remaining ribonucleotides came off in

![Fig. 1. Feulgen-stained section of adult dogfish cornea showing many layers of epithelial cells with darkly stained nuclei.](http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/933627/)
Fig. 3. Schlieren pattern obtained with the Beckman-Spinco analytical ultracentrifuge for a solution of DNA in water (0.1 per cent) at 20° C. The print was made 16 minutes after rotation at 42,040 r.p.m.

Table I. Rates of incorporation of 3H thymidine and 125I deoxyuridine into dogfish corneal epithelium at 20° C. in elasmobranch Ringer's solution over a 5 hour period

<table>
<thead>
<tr>
<th>Substance incorporated</th>
<th>Level in incubation medium</th>
<th>Incorporation rate (pmoles per mg. DNA per hr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H thymidine</td>
<td>10⁻⁷M</td>
<td>1.5 x 10⁻⁷</td>
</tr>
<tr>
<td>125I deoxyuridine</td>
<td>10⁻⁷M</td>
<td>0</td>
</tr>
<tr>
<td>125I deoxyuridine</td>
<td>10⁻⁷M</td>
<td>2.4 x 10⁻⁶</td>
</tr>
</tbody>
</table>

Table II. Effects of cooling and lowered oxygen tension on the incorporation rate of 3H thymidine (10⁻⁷M) into dogfish corneal epithelium in elasmobranch Ringer's solution over a 5 hour period

<table>
<thead>
<tr>
<th>Conditions</th>
<th>O₂ (%)</th>
<th>N₂ (%)</th>
<th>CO₂ (%)</th>
<th>No. of experiments</th>
<th>Incorporation rate (c.p.m. per mg. DNA per hr.)</th>
<th>Per cent inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>20° C.</td>
<td>95</td>
<td>95</td>
<td>5</td>
<td>3</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>20° C.</td>
<td>95</td>
<td>95</td>
<td>5</td>
<td>3</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>0° C.</td>
<td>95</td>
<td>95</td>
<td>5</td>
<td>3</td>
<td>47</td>
<td>55</td>
</tr>
<tr>
<td>0° C.</td>
<td>95</td>
<td>95</td>
<td>5</td>
<td>2</td>
<td>13</td>
<td>78</td>
</tr>
</tbody>
</table>
cation of DNA with Sephadex gel filtration allowed the removal of extraneous RNA without excessive dilution of sample. Dogfish DNA was found to be similar in composition to salmon and herring DNA.

In vitro incorporation of labeled DNA precursors such as 3H thymidine and 125I deoxyuridine was dependent upon appropriate conditions of temperature and oxygen tension. Comparisons of rates of incorporation of base analogues with those of natural bases, estimations of the dose dependency of analogue incorporation, and studies on the effects of excessive concentrations of base analogues on the incorporation of naturally occurring bases can now be made. Several preliminary experiments indicated that when high concentrations of iododeoxyuridine were added to incubation medium containing 3H thymidine, the incorporation of thymidine into epithelial DNA was markedly depressed, probably as a result of competition between the two precursors for sites of incorporation into DNA molecules.

REFERENCES