Supplementary Fig. 1. RPE cells express mitochondrial transcripts for HN.

PCR showing mitochondrial HN transcripts from three independent samples derived from 3 donors (D1-D3). Primer pairs used are stated in the results section.
Supplementary Fig. 2. Pre- or co-treatment or RPE with HN similarly protect from oxidant stress.

Effect of pre- treatment and co-treatment of HN on RPE cell survival. Non-polarized RPE cells were either pre-treated overnight or co-treated with 10µg HN and 150 µM tBH for 24h. TUNEL staining is shown in A and B shows quantification of percentage of TUNEL positive cells from three experiments. **P < 0.01. NS: not significant. Scale bar = 10 µm.
Supplementary Figure 3

A

Control | 150 µM tBH | 10 µg HN | 10 µg HN + 150 µM tBH | Positive control

B

p16
GAPDH

Control | 150 µM tBH | 10 µg HN | 10 µg HN + 150 µM tBH

C

Normalized densitometry units

Control | 150 µM tBH | 10 µg HN | 150 µM tBH + 15 µg HN

Supplementary Fig. 3.

Short-term oxidative stress does not induce senescence in RPE cells

RPE cells were treated with 150 µM tBH or 150 µM tBH plus 10 µg/ml HN for 24 h and processed for SA-β-Gal staining or P16INK4a immunoblot. As a positive control, RPE cells were treated with 30 µM tBH for 2 h, allowed to recover in fresh medium with 10% fetal bovine serum for 22 h. The procedure was repeated and a complete experiment comprised of five sequential tBH treatments.\(^6\) (A, B) No significant change in the number of SA-β-Gal positive cells nor of p16INK4a protein regulation was found with 150 µM tBH treatment for 24 h. Sequential tBH (30 µM) treatment induced senescence in RPE cells (A). Scale bar = 100 µm.