Supplementary Material

Supplemental Table S1, List of Proteins Identified from Shotgun Proteomics of 22y lens by Region\(^a\)

<table>
<thead>
<tr>
<th>Uniprot AC</th>
<th>Protein</th>
<th>Average Spectral Counts(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DF</td>
</tr>
<tr>
<td>P60709</td>
<td>Actin, cytoplasmic</td>
<td>25</td>
</tr>
<tr>
<td>P02489</td>
<td>Alpha-crystallin A chain</td>
<td>216</td>
</tr>
<tr>
<td>P02511</td>
<td>Alpha-crystallin B chain</td>
<td>97</td>
</tr>
<tr>
<td>P06733</td>
<td>Alpha-enolase</td>
<td>3</td>
</tr>
<tr>
<td>P04083</td>
<td>Annexin A1</td>
<td>11</td>
</tr>
<tr>
<td>P07355</td>
<td>Annexin A2</td>
<td>3</td>
</tr>
<tr>
<td>P53672</td>
<td>Beta-crystallin A2</td>
<td>5</td>
</tr>
<tr>
<td>P05813</td>
<td>Beta-crystallin A3</td>
<td>25</td>
</tr>
<tr>
<td>P53673</td>
<td>Beta-crystallin A4</td>
<td>56</td>
</tr>
<tr>
<td>P53674</td>
<td>Beta-crystallin B1</td>
<td>71</td>
</tr>
<tr>
<td>P43320</td>
<td>Beta-crystallin B2</td>
<td>188</td>
</tr>
<tr>
<td>P26998</td>
<td>Beta-crystallin B3</td>
<td>5</td>
</tr>
<tr>
<td>P22914</td>
<td>Beta-crystallin S</td>
<td>71</td>
</tr>
<tr>
<td>Q9NP55</td>
<td>BPI fold-containing family A member 1</td>
<td>0</td>
</tr>
<tr>
<td>P80723</td>
<td>Brain acid soluble protein 1</td>
<td>11</td>
</tr>
<tr>
<td>P16152</td>
<td>Carbonyl reductase [NADPH] 1</td>
<td>7</td>
</tr>
<tr>
<td>Q02413</td>
<td>Desmoglein-1</td>
<td>1</td>
</tr>
<tr>
<td>P15924</td>
<td>Desmoplakin</td>
<td>2</td>
</tr>
<tr>
<td>P21333</td>
<td>Filamin-A</td>
<td>3</td>
</tr>
<tr>
<td>Q12934</td>
<td>Filensin</td>
<td>22</td>
</tr>
<tr>
<td>P04075</td>
<td>Fructose-bisphosphate aldolase A</td>
<td>3</td>
</tr>
<tr>
<td>P09972</td>
<td>Fructose-bisphosphate aldolase C</td>
<td>3</td>
</tr>
<tr>
<td>P47929</td>
<td>Galectin-7</td>
<td>4</td>
</tr>
<tr>
<td>P07315</td>
<td>Gamma-crystallin C</td>
<td>10</td>
</tr>
<tr>
<td>P07320</td>
<td>Gamma-crystallin D</td>
<td>29</td>
</tr>
<tr>
<td>P48165</td>
<td>Gap junction alpha-8 protein</td>
<td>0</td>
</tr>
<tr>
<td>P48637</td>
<td>Glutathione synthetase</td>
<td>3</td>
</tr>
<tr>
<td>P04406</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
<td>4</td>
</tr>
<tr>
<td>P11142</td>
<td>Heat shock cognate 71 kDa protein</td>
<td>2</td>
</tr>
<tr>
<td>P04792</td>
<td>Heat shock protein beta-1</td>
<td>11</td>
</tr>
<tr>
<td>P07900</td>
<td>Heat shock protein HSP 90-alpha</td>
<td>0</td>
</tr>
<tr>
<td>Q86Y23</td>
<td>Hornerin</td>
<td>0</td>
</tr>
<tr>
<td>P30301</td>
<td>Lens fiber major intrinsic protein</td>
<td>3</td>
</tr>
<tr>
<td>P00338</td>
<td>L-lactate dehydrogenase A chain</td>
<td>4</td>
</tr>
<tr>
<td>Q6BCY4</td>
<td>NADH-cytochrome b5 reductase 2</td>
<td>0</td>
</tr>
<tr>
<td>P62937</td>
<td>Peptidyl-prolyl cis-trans isomerase A</td>
<td>1</td>
</tr>
<tr>
<td>Q9BXMO</td>
<td>Periakin</td>
<td>2</td>
</tr>
<tr>
<td>O60437</td>
<td>Periplakin</td>
<td>4</td>
</tr>
<tr>
<td>P30041</td>
<td>Peroxiredoxin-6</td>
<td>2</td>
</tr>
<tr>
<td>Q13515</td>
<td>Phakinin</td>
<td>22</td>
</tr>
<tr>
<td>P00558</td>
<td>Phosphoglycerate kinase 1</td>
<td>1</td>
</tr>
<tr>
<td>Accession</td>
<td>Protein Name</td>
<td>Data 1</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>P18669</td>
<td>Phosphoglycerate mutase 1</td>
<td>1</td>
</tr>
<tr>
<td>Q15149</td>
<td>Plectin</td>
<td>5</td>
</tr>
<tr>
<td>Q99497</td>
<td>Protein DJ-1</td>
<td>0</td>
</tr>
<tr>
<td>P14618</td>
<td>Pyruvate kinase isozymes M1/M2</td>
<td>2</td>
</tr>
<tr>
<td>P00352</td>
<td>Retinal dehydrogenase 1</td>
<td>4</td>
</tr>
<tr>
<td>P04279</td>
<td>Semenogelin-1</td>
<td>35</td>
</tr>
<tr>
<td>Q02383</td>
<td>Semenogelin-2</td>
<td>7</td>
</tr>
<tr>
<td>P35237</td>
<td>Serpin B6</td>
<td>1</td>
</tr>
<tr>
<td>P11166</td>
<td>Solute carrier family 2, facilitated glucose transporter member 1</td>
<td>0</td>
</tr>
<tr>
<td>Q00796</td>
<td>Sorbitol dehydrogenase</td>
<td>0</td>
</tr>
<tr>
<td>Q13813</td>
<td>Spectrin alpha chain, non-erythrocytic 1</td>
<td>8</td>
</tr>
<tr>
<td>Q01082</td>
<td>Spectrin beta chain, non-erythrocytic 1</td>
<td>5</td>
</tr>
<tr>
<td>P00441</td>
<td>Superoxide dismutase [Cu-Zn]</td>
<td>1</td>
</tr>
<tr>
<td>P29401</td>
<td>Transketolase</td>
<td>0</td>
</tr>
<tr>
<td>P68363</td>
<td>Tubulin alpha-1B chain</td>
<td>2</td>
</tr>
<tr>
<td>P07437</td>
<td>Tubulin beta chain</td>
<td>3</td>
</tr>
<tr>
<td>P09936</td>
<td>Ubiquitin carboxyl-terminal hydrolase isozyme L1</td>
<td>1</td>
</tr>
<tr>
<td>P08670</td>
<td>Vimentin</td>
<td>61</td>
</tr>
<tr>
<td>O60281</td>
<td>Zinc finger protein 292</td>
<td>8</td>
</tr>
<tr>
<td>O15015</td>
<td>Zinc finger protein 646</td>
<td>9</td>
</tr>
</tbody>
</table>

aData averaged from triplicate injections.

bSpectral counts based on average of total peptide matches to each protein listed filtered to an FDR of 2.3% to reveal lens fiber major intrinsic protein (AQP0) in each region.
<table>
<thead>
<tr>
<th>Protein (Accession)</th>
<th>Peptide</th>
<th>Precursor Mass</th>
<th>[M+2H]^2+</th>
<th>Heavy Isotope Precursor Mass</th>
<th>[M+2H]^2+</th>
<th>Transitions Monitored</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIMENTIN (P08670)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55SLYASSPCCGYATR*</td>
<td>2</td>
<td>1427.70</td>
<td>714.86</td>
<td>1437.71</td>
<td>719.86</td>
<td>y8, y9, y10, y12</td>
</tr>
<tr>
<td>295FADLSEAANR*</td>
<td>2</td>
<td>1092.52</td>
<td>547.27</td>
<td>1102.53</td>
<td>552.27</td>
<td>b3, y5, y6, y8</td>
</tr>
<tr>
<td>PERIAxin (Q98XM0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56SLSQLQEDQLLSAR*</td>
<td>2</td>
<td>1515.79</td>
<td>758.90</td>
<td>1525.80</td>
<td>763.91</td>
<td>y3, y8, y9, y10</td>
</tr>
<tr>
<td>PERIPLAKIN (Q06437)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1427LAALEQEEAR*</td>
<td>2</td>
<td>1328.66</td>
<td>665.34</td>
<td>1338.67</td>
<td>670.34</td>
<td>y5, y6, y7, y8</td>
</tr>
<tr>
<td>1447VVLQPDQCAR*</td>
<td>2</td>
<td>1280.68</td>
<td>641.35</td>
<td>1290.69</td>
<td>646.35</td>
<td>y5, y6, y7, y8, y9</td>
</tr>
<tr>
<td>BASP1 (P80723)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30ESEPQAAAPAEEK*</td>
<td>2</td>
<td>1426.66</td>
<td>714.34</td>
<td>1434.67</td>
<td>718.34</td>
<td>y6, y8, y11, y11^2+</td>
</tr>
<tr>
<td>105APEQEQAAPGPAAGGEAPK*</td>
<td>2</td>
<td>1774.85</td>
<td>888.43</td>
<td>1782.86</td>
<td>892.44</td>
<td>b8, y11, y12, y13</td>
</tr>
<tr>
<td>105ETPAATAPSSTPK*</td>
<td>2</td>
<td>1385.67</td>
<td>693.84</td>
<td>1393.68</td>
<td>697.85</td>
<td>y6, y8, y9, y12^2+</td>
</tr>
<tr>
<td>FILENSIN (Q12934)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78LGELAGPEDAR*</td>
<td>2</td>
<td>1310.68</td>
<td>656.35</td>
<td>1320.69</td>
<td>661.35</td>
<td>b5, y7, y8, y9</td>
</tr>
<tr>
<td>260VELQATTTLEQAIK*</td>
<td>2</td>
<td>1671.90</td>
<td>836.96</td>
<td>1679.92</td>
<td>840.97</td>
<td>y8, y9, y10, y11</td>
</tr>
<tr>
<td>PHAKININ (Q13515)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201AAEEEINSLYK*</td>
<td>2</td>
<td>1265.61</td>
<td>633.81</td>
<td>1273.63</td>
<td>637.82</td>
<td>y5, y6, y7, y8</td>
</tr>
<tr>
<td>231VEAGALLQAK*</td>
<td>2</td>
<td>998.58</td>
<td>500.30</td>
<td>1006.59</td>
<td>504.30</td>
<td>b2, y5, y7, y8</td>
</tr>
</tbody>
</table>
Supplemental Table S3, Absolute Quantitation of Cytoskeletal Peptides

A. Vimentin

<table>
<thead>
<tr>
<th>Age Group</th>
<th>DF</th>
<th>RZ</th>
<th>TZ</th>
<th>IC</th>
<th>SLYASSPGGYATR fmol</th>
<th>Std Dev</th>
<th>FADLSEAANR fmol</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-year</td>
<td>198.73</td>
<td>5.59</td>
<td>23.15</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.81</td>
<td>0.08</td>
<td>5.11</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.99</td>
<td>0.28</td>
<td>0.76</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.36</td>
<td>0.35</td>
<td>0.15</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-year</td>
<td>64.82</td>
<td>3.14</td>
<td>12.56</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.64</td>
<td>0.01</td>
<td>0.90</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.31</td>
<td>0.17</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.87</td>
<td>0.06</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-year</td>
<td>29.29</td>
<td>0.05</td>
<td>4.08</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.29</td>
<td>0.79</td>
<td>0.82</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.40</td>
<td>0.22</td>
<td>0.09</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.34</td>
<td>0.29</td>
<td>0.01</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Periaxin

<table>
<thead>
<tr>
<th>Age Group</th>
<th>DF</th>
<th>RZ</th>
<th>TZ</th>
<th>IC</th>
<th>SLSLQEGDQLLSAR fmol</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-year</td>
<td>33.17</td>
<td>5.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.39</td>
<td>1.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.64</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.01</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-year</td>
<td>3.12</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.79</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.24</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-year</td>
<td>1.40</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.12</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.46</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C. Periplakin

<table>
<thead>
<tr>
<th></th>
<th>LAALEQEEAEAR</th>
<th>VVLQQDPQQAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fmol</td>
<td>Std Dev</td>
</tr>
<tr>
<td>21-year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>0.72</td>
<td>0.03</td>
</tr>
<tr>
<td>RZ</td>
<td>0.62</td>
<td>0.00</td>
</tr>
<tr>
<td>TZ</td>
<td>0.16</td>
<td>0.02</td>
</tr>
<tr>
<td>IC</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>22-year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>0.26</td>
<td>0.03</td>
</tr>
<tr>
<td>RZ</td>
<td>0.18</td>
<td>0.04</td>
</tr>
<tr>
<td>TZ</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>IC</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>27-year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>0.20</td>
<td>0.02</td>
</tr>
<tr>
<td>RZ</td>
<td>0.11</td>
<td>0.03</td>
</tr>
<tr>
<td>TZ</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>IC</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

D. BASP1

<table>
<thead>
<tr>
<th></th>
<th>ESEPQAAAEPAAEAK</th>
<th>APEQEQAAPGPAAGGEAPK</th>
<th>ETPAATEAPSSTPK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fmol</td>
<td>Std Dev</td>
<td>fmol</td>
</tr>
<tr>
<td>21-year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>1.27</td>
<td>0.11</td>
<td>0.51</td>
</tr>
<tr>
<td>RZ</td>
<td>2.80</td>
<td>0.02</td>
<td>1.28</td>
</tr>
<tr>
<td>TZ</td>
<td>1.58</td>
<td>0.00</td>
<td>0.64</td>
</tr>
<tr>
<td>IC</td>
<td>1.36</td>
<td>0.03</td>
<td>0.43</td>
</tr>
<tr>
<td>22-year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>0.78</td>
<td>0.01</td>
<td>0.43</td>
</tr>
<tr>
<td>RZ</td>
<td>1.34</td>
<td>0.17</td>
<td>0.96</td>
</tr>
<tr>
<td>TZ</td>
<td>1.20</td>
<td>0.11</td>
<td>0.43</td>
</tr>
<tr>
<td>IC</td>
<td>0.86</td>
<td>0.08</td>
<td>0.74</td>
</tr>
<tr>
<td>27-year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>0.36</td>
<td>0.10</td>
<td>0.13</td>
</tr>
<tr>
<td>RZ</td>
<td>1.42</td>
<td>0.23</td>
<td>0.50</td>
</tr>
<tr>
<td>TZ</td>
<td>1.09</td>
<td>0.19</td>
<td>0.42</td>
</tr>
<tr>
<td>IC</td>
<td>1.35</td>
<td>0.02</td>
<td>0.34</td>
</tr>
</tbody>
</table>
E. Filensin

<table>
<thead>
<tr>
<th></th>
<th>21-year</th>
<th></th>
<th>22-year</th>
<th></th>
<th>27-year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DF</td>
<td>RZ</td>
<td>TZ</td>
<td>IC</td>
<td>DF</td>
</tr>
<tr>
<td>fmol</td>
<td>Std Dev</td>
<td>fmol</td>
<td>Std Dev</td>
<td>fmol</td>
<td>Std Dev</td>
</tr>
<tr>
<td>21-year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56.00</td>
<td>2.34</td>
<td>2832.85</td>
<td>239.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105.78</td>
<td>2.38</td>
<td>5044.58</td>
<td>1080.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65.75</td>
<td>2.59</td>
<td>2007.54</td>
<td>147.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>83.68</td>
<td>2.82</td>
<td>3628.20</td>
<td>195.39</td>
<td></td>
</tr>
<tr>
<td>22-year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.75</td>
<td>0.17</td>
<td>56.22</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47.10</td>
<td>0.44</td>
<td>161.94</td>
<td>6.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34.22</td>
<td>0.09</td>
<td>45.71</td>
<td>4.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.94</td>
<td>0.43</td>
<td>80.33</td>
<td>7.32</td>
<td></td>
</tr>
<tr>
<td>27-year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.54</td>
<td>0.09</td>
<td>32.96</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42.64</td>
<td>0.82</td>
<td>82.29</td>
<td>2.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.84</td>
<td>1.96</td>
<td>63.19</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47.80</td>
<td>0.60</td>
<td>95.59</td>
<td>10.37</td>
<td></td>
</tr>
</tbody>
</table>

F. Phakinin

<table>
<thead>
<tr>
<th></th>
<th>21-year</th>
<th></th>
<th>22-year</th>
<th></th>
<th>27-year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DF</td>
<td>RZ</td>
<td>TZ</td>
<td>IC</td>
<td>DF</td>
</tr>
<tr>
<td>fmol</td>
<td>Std Dev</td>
<td>fmol</td>
<td>Std Dev</td>
<td>fmol</td>
<td>Std Dev</td>
</tr>
<tr>
<td>21-year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>131.00</td>
<td>3.05</td>
<td>30.80</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>291.82</td>
<td>4.41</td>
<td>72.65</td>
<td>13.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>170.23</td>
<td>0.47</td>
<td>40.46</td>
<td>3.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>191.75</td>
<td>20.26</td>
<td>41.64</td>
<td>6.29</td>
<td></td>
</tr>
<tr>
<td>22-year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.49</td>
<td>0.23</td>
<td>7.09</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48.90</td>
<td>0.23</td>
<td>11.49</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.81</td>
<td>1.65</td>
<td>6.36</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.14</td>
<td>1.39</td>
<td>7.24</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>27-year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.14</td>
<td>0.46</td>
<td>3.71</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.95</td>
<td>1.56</td>
<td>8.32</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.08</td>
<td>0.65</td>
<td>8.47</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.29</td>
<td>1.50</td>
<td>8.16</td>
<td>0.21</td>
<td></td>
</tr>
</tbody>
</table>