Gabor features
G σ,op α were calculated by convolution of the three opponency images op∈(
L db,
L rg,
L by) with Gabor wavelet kernels at scales σ = 1, 2, 4, 8, 16, and 32 pixels, at orientation α = 0°, 45°, 90°, and 135°:
\[\mathit{G}_{{\sigma},op}^{{\alpha}}(x,y){=}e^{{-}\ \frac{x^{2}}{2{\sigma}^{2}}}cos\ ({\omega}x{+}{\varphi}),\]
with phase φ 0 and with spatial frequency ω=
\(\frac{{\pi}}{{\sigma}}\) constant, for a total of 82 features. See
Figure 3for an example of these kernels. Stereo disparity features were computed by first convolving the left and right color opponency images with left and right Gabor kernels
k l and
k r:
\[k_{l}(x){=}e^{{-}\ \frac{x^{2}}{2{\sigma}^{2}}}\mathrm{cos}({\omega}x{+}{\varphi}_{\mathrm{l}})\]
\[k_{\mathrm{r}}(x){=}e^{{-}\ \frac{x^{2}}{2{\sigma}^{2}}}\mathrm{cos}({\omega}x{+}{\varphi}_{\mathrm{r}}),\]
where φ
l,φ
r are the phases of the left and right Gabor wavelets, and ω its preferred spatial frequency, which was kept constant at ω=
\[\frac{{\pi}}{{\sigma}}\]
. The linear combination of convolutions of the left and right images with these respective kernels mimics the output of a simple cell:
\[S_{{\omega}}({\sigma},{\varphi}_{\mathrm{l}},{\varphi}_{\mathrm{r}}){=}L_{\mathrm{l,1}}{\otimes}k_{\mathrm{l}}{+}L_{\mathrm{l,r}}{\otimes}k_{\mathrm{r}},\]
with
L 1,l,
L l,r the left and right intensity images, respectively. The sum of the squares of two
\[S_{1,{\omega}}({\sigma},{\varphi}_{\mathrm{l}},{\varphi}_{\mathrm{r}}),S_{2,{\omega}}({\sigma},{\varphi}_{1}{+}\ \frac{{\pi}}{2},{\varphi}_{\mathrm{r}}{+}\ \frac{{\pi}}{2})\]
formed quadrature pairs:
\[C_{{\omega}}({\sigma},{\Delta}{\varphi}){=}(S_{\mathrm{1,{\omega}}}({\sigma},{\varphi}_{\mathrm{l}},{\varphi}_{\mathrm{r}}))^{2}{+}\left[S_{2,{\omega}}\left({\sigma},{\varphi}_{\mathrm{l}}{+}\ \frac{{\pi}}{2},{\varphi}_{\mathrm{r}}{+}\ \frac{{\pi}}{2}\right)\right]\ ^{2},\]
with Δφ the phase difference
\[{\Delta}{\varphi}{=}{\varphi}_{\mathrm{r}}{-}{\varphi}_{\mathrm{l}}\]
between the right and left eye receptive fields. With
\[{\Delta}{\varphi}{\in}\left\{{\pi}\ \frac{6}{8}{\pi}\ \frac{4}{8}{\pi},\ \frac{2}{8}{\pi},0,{-}\ \frac{2}{8}{\pi},{-}\ \frac{4}{8}{\pi},{-}\ \frac{6}{8}{\pi}\right\}\]
,
C ω(σ,Δφ) was then tuned to stereo disparities of {−4,−3,−2,−1,0,1,2,3} pixels, respectively, calculated at scales σ =1, 2, 4, 8, 16, and 32 pixels, and for each of the (
L op,
R op)∈{(
L db,
R db),(
L rg,
R rg),(
L by,
R by)} color opponency pairs, resulting in 48 features for each of the color opponency spaces.
12