There are several advantages of the current automated segmentation approach over manual planimetry. First, although planimetry is the gold standard for quantifying glaucoma progression, it introduces great interobserver variability.
5 Its subjective nature is one of the potential sources of interobserver variability. However, the present automatic algorithm based on SD-OCT is completely objective and, therefore, should be more reproducible (assuming the NCO is a relatively stable landmark) compared with subjective, manual segmentation by human experts, though this has yet to be rigorously demonstrated. Second, as reported,
5 manual segmentation by planimetry is cumbersome and time-consuming and remains a research tool. However, the algorithm, when properly implemented, should need only a few minutes to produce the analysis and would be compatible with that used in routine clinical use. Third, as found by our automated and others' manual
12,13,20 studies, the clinical optic disc margin seems to be the projection of a number of
different recognizable anatomic landmarks, introducing greater variability between experts, depending on the landmarks they use to define “their” rim, and thus great variability for the quantification of glaucoma progression. Landmarks of the NCO will remain the same and, therefore, are expected to be relatively stable throughout the course of the glaucoma. An ideal reference plane based on a stable structure is critical in longitudinal imaging, glaucomatous analysis, and neuropathy analysis of the ONH. The NCO-based reference plane has the potential to more sensitively detect specific glaucomatous ONH changes, such as alterations in the anterior laminar surface and prelaminar neural tissue internal limiting membrane.
12,13 Although NCO-based metrics cannot replace the clinically appreciated optic disc margin, because the NCO is expected to be stable, it has the potential to provide a basis for other 2D or 3D ONH parameter quantification, and this would aid clinicians to more easily and better interpret the progression of glaucoma.