We also found that all measurements of ONH parameters showed excellent intravisit and intervisit reproducibility using Cirrus HD-OCT. There were no differences between intravisit and intervisit ICCs. Our intravisit results agree with those recently reported for SD-OCT (RTVue; Optovue, Inc.) by Gonzalez-Garcia et al.,
8 though their CVs were greater than 10% for cup area, rim volume, cup volume, and CDR. The reproducibility of OCT ONH measurements has been previously evaluated with TD OCT and yielded variable results.
2 –6 Paunescu et al.
5 examined 10 young healthy subjects and found that the CDR and VCDR showed the best ICCs of 97% and 90%, respectively, whereas disc area and vertical integrated rim width showed the worst ICCs of 52% and 51%. However, they failed to specify whether these ICCs were for intravisit or intervisit measurements. In another study by Kamppeter et al.
2 involving 10 healthy subjects, ONH measurements showed relatively good reproducibility, with the vertical integrated rim area having the lowest CV and the cup area and disc area the highest. Olmedo et al.
4 evaluated the reproducibility of ONH parameters in 10 normal and 10 glaucomatous eyes. They observed that ICCs for normal eyes were greater than 81% for all parameters, but disc area (64.7%), rim area (33.3%), and horizontal integrated rim area (23.1%) had relatively poor reproducibility. ICCs in glaucomatous eyes ranged from 85.4% to 95.2%, except for disc area (68.1%). No significant differences in reproducibility were found between normal and glaucomatous eyes. Pueyo et al.
6 compared the reproducibility of ONH measurements in 32 healthy, 41 ocular hypertensive, and 33 glaucoma subjects. High reproducibility, with CVs <10%, was observed for disc area, cup area, CDR, horizontal CDR, and vertical CDR, whereas rim area, vertical integrated rim area, and horizontal integrated rim width were less reproducible. More recently, Lin et al.
3 found ONH measurements to be highly reproducible, with ICCs ranging between 86% and 95.9%, with the exception of disc area (73%). It should be noted that unlike Stratus OCT–based reports showing low reproducibility of disc area measurements and variable results with regard to the other parameters, both the study by Gonzalez-Garcia et al.
8 using SD-OCT (RTVue; Optovue, Inc.) and the present study found that disc area measurement is as reproducible as other ONH and RNFL parameters. Disc area is a weak risk factor for glaucoma and is not influenced by IOP level or extent of glaucomatous damage.
19 Therefore, it does not change as glaucoma progresses. Its clinical relevance in determining glaucoma progression is likely to be weak irrespective of its reproducibility. However, because rim area, CDR, VCDR, HCDR, VRT, and HRT are directly dependent on disc area, it is essential that disc area measurements be highly reproducible. Variability in disc area may indicate failure to correctly find and delineate the disc margin, as previously reported with the Stratus OCT ONH analysis algorithm.
20,21 The Stratus OCT algorithm uses a default reference plane located 150 μm above the level of the RPE to define the cup margin. The drawback to this method is that the reference plane is not stable, so that the default reference plane may be above the “actual” reference plane in optic discs with significant cupping. Leung et al.
22 observed significant changes in ONH measurements when the reference plane was placed 55 μm above or below the default reference plane, indicating the variability of measurements if the reference plane was not stable. The ONH analysis software used for the present study made direct measurements of both the disc and the cup that depended only on the anatomy delineated rather than on a reference plane.