Abstract
Purpose.:
Inflammation contributes significantly to the pathogenesis of diabetic macular edema (DME). In particular, retinal microglia demonstrate increased activation and aggregation in areas of DME. Study authors investigated the safety and potential efficacy of oral minocycline, a drug capable of inhibiting microglial activation, in the treatment of DME.
Methods.:
A single-center, prospective, open-label phase I/II clinical trial enrolled five participants with fovea-involving DME who received oral minocycline 100 mg twice daily for 6 months. Main outcome measurements included best-corrected visual acuity (BCVA), central retinal subfield thickness (CST), and central macular volume using spectral domain optical coherence tomography (SD-OCT) and late leakage on fluorescein angiography (FA).
Results.:
Findings indicated that the study drug was well tolerated and not associated with significant safety issues. In study eyes, mean BCVA improved continuously from baseline at 1, 2, 4, and 6 months by +1.0, +4.0, +4.0, and +5.8 letters, respectively, while mean retinal thickness (CST) on OCT decreased by −2.9%, −5.7%, −13.9, and −8.1% for the same time points. At month 6, mean area of late leakage on FA decreased by −34.4% in study eyes. Mean changes in contralateral fellow eyes also demonstrated similar trends. Improvements in outcome measures were not correlated with concurrent changes in systemic factors.
Conclusions.:
In this pilot proof-of-concept study of DME, minocycline as primary treatment was associated with improved visual function, central macular edema, and vascular leakage, comparing favorably with historical controls from previous studies. Microglial inhibition with oral minocycline may be a promising therapeutic strategy targeting the inflammatory etiology of DME. (ClinicalTrials.gov number, NCT01120899.)
Participants were enrolled according the following person-based inclusion criteria: (1) at least 18 years of age, (2) diagnosis of type 1 or type 2 diabetes, and (3) medically stable with normal renal and hepatic function. Patients that were medically unstable, allergic to minocycline or fluorescein, or unwilling to use birth control while being of childbearing potential were excluded from enrollment. In addition, participants were required to have at least one eligible study eye, as defined by the following criteria: (1) best-corrected Early Treatment of Diabetic Retinopathy Study (ETDRS) visual acuity score between 78 and 39 letters (i.e., between 20/32 and 20/200); (2) retinal thickening involving the center of the fovea (defined as central subfield thickness [CST] on baseline optimal coherence tomography [OCT] measurement >250 microns) secondary to DME; and (3) history of previous treatment with focal laser photocoagulation following standard-of-care/best practice guidelines unless DME had been determined by the treating investigator as either not responsive or not amenable to laser treatment. Eyes that met any of the following criteria were excluded from enrollment: (1) had severe disease that were judged by the treating investigator as being unlikely to benefit from further therapy (such as those with central ischemia or macular scarring); (2) had vision loss from other coexisting ocular disease; (3) were treated with panretinal scatter photocoagulation (PRP) within 4 months prior to study entry; (4) had undergone pars plana vitrectomy within 6 months prior to study entry; (5) had undergone ocular surgical interventions (including cataract extraction, scleral buckle, and other intraocular surgery) within 3 months prior to study entry; (6) had undergone YAG capsulotomy within 2 months prior to study entry; and (7) had undergone treatments for DME such as intravitreal or periocular steroids or intravitreal anti-VEGF agents within 3 months prior to study entry.
Both eyes of each enrolled participants were evaluated in the study; one eye was designated as the “study eye” while the other was designated the “fellow eye.” If only one eye in a participant fulfilled the inclusion criteria, that eye was designated the study eye. If both eyes met eligibility criteria, the treatment-naïve eye was designated as the study eye. If both eyes were naïve to treatment, the eye with the higher visual acuity score was designated as the study eye.
Minocycline hydrochloride (Ranbaxy Pharmaceutical Inc, Princeton, NJ; National Drug Code 63304 696 50) was reformulated by the NIH Research Pharmacy as capsules for oral administration. Each capsule contained 100 mg of minocycline with the following inactive ingredients: magnesium stearate and starch (corn), gelatin, silicon dioxide, sodium lauryl sulfate, titanium dioxide, and black iron oxide. Participants were instructed to take 100 mg of minocycline orally two times a day, once in the morning and once in the evening, approximately 12 hours apart.
Study drug compliance was monitored during the study. Participants were asked to record study drug administration using a “pill diary” and to return any unused study medication. Compliance data was obtained from a review of the pill diary at each study visit and from study drug accounting of unused medication. Unused study drug was returned to the NIH Research Pharmacy.
Five participants with DME were enrolled into the study according to the study eligibility criteria and were treated with 100 mg of minocycline orally twice daily for up to 24 months. Study visits were scheduled at baseline, month 1, month 2, and every 2 months thereafter until month 24. Additional ad hoc visits were permitted as clinically warranted.
Participants were evaluated at the baseline study visit with a medical history, review of systems, medication assessment, thyroid palpation, and serum blood analysis including hemoglobin A1c (HgbA1c), complete blood count, electrolyte analysis, and liver and thyroid function tests. Serum blood analyses were repeated at month 2 and every 4 months thereafter. Review of systems, adverse event assessment, and urine pregnancy testing (for female participants of childbearing age) were performed at each study visit.
Participants were evaluated at each study visit with a complete ophthalmic examination that included bilateral assessment of best-corrected visual acuity (BCVA), intraocular pressure measurement, and stereoscopic funduscopy. Best-corrected distance visual acuity was assessed using a standard ETDRS protocol and scored using the ETDRS logMAR visual acuity chart.
Spectral domain optical coherence tomography (SD-OCT) imaging was obtained in both eyes of each participant at each study visit. SD-OCT images were captured with an OCT instrument (Cirrus HD-OCT; Carl Zeiss Meditec, Dublin, CA) using the 512 × 128 scan pattern with the center of the 6 × 6-mm scanning area positioned at the center of the macula. Quantitative longitudinal analysis of OCT scans was performed by first aligning the scans spatially using functions provided within the OCT instrument software (Carl Zeiss) and were then checked for accuracy. The accuracy of automated delineations of the inner and outer retinal boundaries was also manually verified. OCT retinal thickness measurements in the macula were analyzed using a circular ETDRS-type grid positioned on the center of the fovea. Mean thickness measurements for the central subfield (central circle of diameter 1 mm) and for the four “inner” quadrants (circumscribed by a circle 3 mm in diameter, concentric to the central region and divided into superior, inferior, nasal, and temporal quadrants) were calculated. The volume of the retina summed over all five subfields, termed central macular volume (CMV) was also computed in units of cubic millimeters.
3
Imaging by color fundus photography and fluorescein angiography (FA) was obtained a standard digital imaging system (Ophthalmic Imaging Systems Inc., Sacramento, CA) in both eyes of each participant at baseline and at month 6, month 12, month 18, and month 24. The area of late fluorescein leakage (at approximately 10 minutes) was graded in each eye by three independent retinal specialists (CC, WW, and EC) using a region-of-interest tool in an image analysis software package (ImageJ; NIH, Bethesda, MD). Graders were masked to the time point and identity of the images during grading. The measurements from each grader were then averaged and changes in the area of leakage from baseline calculated.
In this prospective, five-participant, phase I/II pilot study, minocycline administered orally at a dose of 100 mg taken twice daily achieved a relatively high drug adherence rate (90 ± 9%, mean ± SD; range = 78%–99%) among participants during the study. The study drug was well tolerated, with minimal drug-related AEs or ocular complications. At month four, 5/5 participants did not meet criteria for disease worsening, and therefore did not require ancillary treatment for DME. As a result, all five participants were treated with minocycline only from baseline to month 6.
From baseline to month 6, mean visual acuity and mean central macular thickness and volume improved progressively with time in study and fellow eyes. While the improvements in visual acuity changes were modest overall (5.8 ± 5.4 in study eyes and 4.4 ± 3.5 in fellow eyes), all but one eye (9/10) demonstrated improvement in acuity; 1/10 eye remained stable at 85 letters (20/20); and 0/10 eyes demonstrated a decrease in visual acuity. One participant met the primary outcome measure of improvement in visual acuity by 15 letters (participant 4). The progressive improvements in visual acuity were generally concurrent with progressive decreases in macular edema as measured by CST and CMV, with some exceptions. The study eye in participant 4 demonstrated a consistent and durable improvement in visual acuity from baseline to month 6, even though improvements in macular edema measurements were more variable over follow-up. Of the eyes in the study, only one study eye (in participant 1) demonstrated a decrease in CST that exceeded 1 logOCT step. On FA, 9 out of 10 eyes demonstrated a decrease in the area of late leakage at month 6.
Taken together, these findings indicate a potential effect of the study drug in reducing abnormal vascular permeability, and thereby improving macular edema. Increased vascular permeability can be related to the presence of activated retinal microglia, which produce a host of inflammatory mediators, including TNF-α, interleukin-1β, intercellular adhesion molecule 1, cyclooxygenase, inducible nitric oxide synthase, and VEGF, which can induce retinal leukostasis and blood-retinal barrier breakdown.
7 Although the initial stimulus for microglial activation is unclear, sustained microglial activation in the retina at sites of DR lesions can perpetuate chronic neuroinflammation and exacerbate DR-related pathological changes. In vitro, minocycline has been shown to inhibit the activation of microglia and effectively decrease the expression of inflammatory cytokines.
23 In vivo, systemic minocycline in a rodent model of diabetes similarly repressed diabetes-induced upregulation of inflammatory mediators.
13 As a result, the anatomical effects in terms of reduced edema and vascular leakage observed in the present study are likely a result of reduced microglial activation in the retina.
In addition to reducing vascular permeability and improving macular edema, microglia inhibition with minocycline may also act in other ways to improve visual acuity in DME. Activated microglia in the CNS can induce neuronal death
24 and synapse degeneration
25 ; and in the diabetic retina, these effects may contribute to neurodegeneration, which may not be evident macroscopically on clinical examination.
10,26 In animal models of retinal diseases including glaucoma,
27 retinal hemorrhage,
28 and photoreceptor degeneration,
29,30 treatment with minocyline has resulted in a decrease in neuronal degeneration. Minocycline was also effective in reducing diabetes-induced upregulation of caspase-3, a mediator of apoptotic cell death in a rodent model of diabetic retinopathy.
13 These studies highlight the involvement of microglial-mediated chronic neuroinflammation in neuronal and synaptic dysfunctions in DR, and suggest an additional mechanism by which minocycline may contribute toward the improvements in visual acuity observed in the current study.
Although the current pilot phase II study did not contain a control arm, study authors compared clinical outcomes with available data from control groups from other clinical studies of diabetic macular edema. Comparisons were made taking into account the use of rescue laser treatment in these control groups, and the time following enrollment that measurements were made. The safety and efficacy of ranibizumab in diabetic macular edema with center involvement (RESOLVE) study, a sham-controlled, double-masked study of eyes with DME,
31 contained a sham-treatment control arm containing 49 eyes in which rescue laser was made available 3 months following enrollment. At the planned interim analysis of a subset of eyes at 6 months, mean OCT CST increased by 15% in the sham-treated group. Change in BCVA was not reported. At the 12-month primary outcome time point, the mean change in OCT CST was −48.4 ± 153.4 μm and the mean change in BCVA was −1.4 ± 14.2 letters. The phase III study of ranibizumab injection in subjects with clinically significant macular edema with center involvement secondary to diabetes mellitus (RISE) and the phase III study of ranibizumab injection in subjects with clinically significant macular edema with center involvement secondary to diabetes mellitus (RIDE) similarly included a sham-treatment control arm in which rescue laser was also available 3 months following enrollment. While the results of the RIDE and RISE studies have not been published, data was available from a presented abstract (Brown DM, et al.
IOVS 2011;52: ARVO E-Abstract 6647), which reported that at 24 months, the control arm decreased in mean central foveal thickness by 133 μm, with 18% of participants improving by at least 3 lines of vision. Data from the ETDRS
32 also demonstrated that the subset of study eyes that were comparable in disease severity (i.e., with mild to moderate nonproliferative diabetic retinopathy and macular edema at the center of the macula), in which focal/grid laser was deferred, experienced a vision decrease from baseline of −0.9 ± 7.3 letters.
While the current study included the possibility of providing rescue laser, no participant reached the laser-rescue criteria in the first 6 months of the study. As such, all participants were receiving minocycline treatment only. Although study authors observed modest improvements in visual acuity and OCT thickness at 6 months, these changes compared favorably with those from the control cohort in the RESOLVE study at the 6- and 12-month time points. Comparisons with the control groups in the RIDE and RISE studies are complicated by the longer duration (24 months) of follow-up, across which rescue laser was additionally made available. As a result, the data here is interpreted as potentially revealing a positive effect secondary to study drug as suggested by: (1) the favorable comparison with the control group at 6 months in the RESOLVE study; (2) the use of study drug without additional ancillary treatment; (3) the time-dependent improvement of functional and anatomical outcome measures over the first 6 months; (4) the simultaneous improvements in mean BCVA, macular thickness, and fluorescein leakage; and (5) the absence of systemic trends (i.e., HgbA1C, blood pressure) that would suggest alternative etiologies for improvements in outcome measures.
While effective, current therapies for DME—such as intravitreal anti-VEGF agents and steroids and focal laser—are limited by a high burden of treatment, ocular adverse effects, and unclear mechanisms of action.
33 The therapeutic strategy of microglial inhibition may be a useful adjunct, as it broadly targets a central cellular mediator driving chronic neuroinflammation in DR Oral minocycline, with the advantages of high bioavailability, long history of use and known safety profile, and abundant preclinical data supporting its biological effects and its potential efficacy, is promising as a microglial-targeted therapy for DR and warrants further investigation.
In conclusion, the findings in this pilot proof-of-concept study indicate a potential effect of oral minocycline for the treatment of DME. Administered over 6 months, oral minocycline appeared to have potential efficacy in increasing visual acuity and reducing macular edema in a progressive time-dependent manner. These changes were associated with a decrease in vascular leakage as determined by fluorescein angiography and were not associated with concurrent changes in systemic factors such as glycemic index, blood pressure, or serum creatinine. The progressive improvement of outcomes measures with increasing duration of treatment was suggestive of a treatment effect that was secondary to the study drug. These findings encourage further investigation of the strategy of microglial inhibition with oral minocycline in the treatment of DME. These further studies may comprise of larger phase II trials in which minocycline or placebo may be assigned in combination with approved anti-VEGF therapies for DME, similar to pilot trials presently ongoing for the treatment of vein occlusions (NCT01468831 and NCT01468844). While current anti-VEGF therapies may strongly ameliorate VEGF-dependent pathological changes in the retina in diabetic retinopathy, they may not address the underlying etiology of VEGF dysregulation. Pharmacological strategies involving microglial inhibition hold promise in decreasing causative inflammatory changes and may constitute an ancillary treatment for reducing the chronicity of disease and the burden of treatment.