Biomarkers can be used to estimate disease risk, diagnose presence of the disease in an individual, or tailor treatment for the disease in an individual.
Biomarkers have become the basis for preventive medicine, meaning medicine that recognizes risk of disease early, and may open opportunities to prevent progression of the disease. They are the key to personalized treatments tailored to specific patients.
The MA turnover on fundus photographs, taking into account their exact, specific location in the fundus, has the potential to become an extremely valuable biomarker of the overall progression of diabetic retinal vascular disease. The MA formation rate appears to be a direct indicator of the progression of retinal vascular damage and activity of disease.
26
Subclinical macular edema, measured by quantifying changes in retinal thickness with OCT, is another promising biomarker of progression to clinically significant diabetic macular edema.
27 The measurements are reliable, and changes in retinal thickness are a direct indication of macular edema and breakdown of the blood–retinal barrier. Another promising examination procedure is mfERG.
28 A large clinical trial now in progress will examine its use and potential. Testing these promising prognostic biomarkers and their final validation is expected to contribute decisively to the design of clinical trials capable of evaluating the efficacy of new drugs capable to halt DR in the initial stages of the disease.
The only systemic biomarker of DR progression that is validated is hemoglobin A1c (HbA1c), but an interesting and exciting perspective also has been opened for genetic biomarkers.
Recently, our research group performed a case–control association study in type 2 diabetic patients looking for genetic biomarkers that may predict DR progression.
In the univariate analysis, 15 single nucleotide polymorphisms (SNPs) from nine candidate genes showed statistically significant associations with the different phenotypes: ICAM1 rs5030400 and PPARGC1A rs16874120 are associated with phenotype A; ACE rs4461142, AGER rs3131300, AKR1B1 rs1790998, AKR1B1 rs2259458, AKR1B1 rs5053, NOS1 rs1552228, and ICAM1 rs1801714 with phenotype B; and AKR1B1 rs1790998, AKR1B1 rs3896278, NOS1 rs1552228, PPARGC1A rs10213440, MTHFR rs1801133, and VEGFA rs3024994 with phenotype C. Only these SNPs were included in the phenotypes Multivariate Logistic Regression analysis.
The results of the Multivariate Logistic Regression analysis show associations between ICAM1, PPARGC1A, and MTHFR, and the phenotypes of DR progression after adjusting for sex, age, diabetes duration, and HbA1C. The SNP ICAM1 rs1801714 was associated with phenotype B. Gene variants PPARGC1A rs10213440 and MTHFR rs1801133 were associated with phenotype C.
The multivariate analysis results also indicated an association between the gene ICAM1 and the development of CSME after adjusting for sex, age, diabetes duration, and HbA1C, suggesting that an abnormal inflammatory response may be the basis for the development of macular edema.
An individual approach to management of DR based on prognostic and predictive biomarkers can be envisioned in the near future. These will involve generalized cost-effective screening, identification of the eyes that show disease activity and are at risk for progression to vision-threatening DR, and more timely treatment before development of irreversible vision loss.