June 2013
Volume 54, Issue 15
ARVO Annual Meeting Abstract  |   June 2013
Intrinsic Optical Signal Mapping of Localized Retinal Dysfunction
Author Affiliations & Notes
  • Xincheng Yao
    Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
  • Qiuxiang Zhang
    Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
  • Rongwen Lu
    Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
  • Footnotes
    Commercial Relationships Xincheng Yao, 61/717,679 (P); Qiuxiang Zhang, 61/717,679 (P); Rongwen Lu, 61/717,679 (P)
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2013, Vol.54, 2639. doi:https://doi.org/
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Xincheng Yao, Qiuxiang Zhang, Rongwen Lu; Intrinsic Optical Signal Mapping of Localized Retinal Dysfunction. Invest. Ophthalmol. Vis. Sci. 2013;54(15):2639. doi: https://doi.org/.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

The purposes of this study were to characterize the correlation between transient intrinsic optical signals (IOSs) and electrophysiological kinetics in the retina, and to validate in vivo confocal IOS mapping of localized retinal dysfunction.


A rapid line-scan ophthalmoscope was employed to conduct in vivo confocal-IOS imaging of frog (Rana Pipiens) retinas. This imaging system provided cellular spatial-resolution and millisecond temporal-resolution. Dynamic spatiotemporal filtering was integrated to reject signal contamination of hemodynamic changes on fast IOS imaging. Comparative IOS and electroretinography (ERG) measurements were conducted to investigate the physiological mechanism of confocal-IOS. Laser-injured frog eyes were employed to validate the potential of confocal-IOS mapping of localized retinal dysfunctions.


Comparative IOS and ERG experiments revealed a close correlation between the confocal-IOS and retinal ERG a-wave, which has been widely used to evaluate photoreceptor function. IOS imaging of laser-injured frog eyes indicated that the confocal-IOS could unambiguously detect localized (30 µm) functional lesions in the retina before a morphological abnormality is detectable (Fig. 1).


The confocal-IOS predominantly results from retinal photoreceptors, and promises a method for concurrent morphological and functional assessment of the retina (Fig. 1). We anticipate that confocal-IOS imaging can provide applications in early detection of age-related macular degeneration, retinitis pigmentosa and other retinal diseases that can cause pathological changes in the photoreceptors.

Keywords: 508 electrophysiology: non-clinical • 648 photoreceptors • 552 imaging methods (CT, FA, ICG, MRI, OCT, RTA, SLO, ultrasound)  

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.