June 2013
Volume 54, Issue 15
Free
ARVO Annual Meeting Abstract  |   June 2013
Controlled Physical Properties of Stem Cell Scaffolds for Photoreceptor Regeneration
Author Affiliations & Notes
  • Kristan Worthington
    Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA
    Institute for Vision Research, University of Iowa, Iowa City, IA
  • Aliasger Salem
    Pharmaceutical Science and Translational Therapeutics, University of Iowa, Iowa City, IA
  • Allan Guymon
    Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA
  • Budd Tucker
    Institute for Vision Research, University of Iowa, Iowa City, IA
Investigative Ophthalmology & Visual Science June 2013, Vol.54, 4697. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Kristan Worthington, Aliasger Salem, Allan Guymon, Budd Tucker; Controlled Physical Properties of Stem Cell Scaffolds for Photoreceptor Regeneration. Invest. Ophthalmol. Vis. Sci. 2013;54(15):4697.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: The degeneration of photoreceptors, as manifested in diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), is one of the leading causes of blindness in the western world. Injection of a single cell suspension into the sub-retinal space has been shown to partially restore function to retinas with early-stage degeneration. This success, however, does not translate to advanced disease due to low cell retention, viability and integration. In late stage disease injected cells overall lack the support necessary for restoring retinal function. The goal of this project is to provide support to differentiating replacement cells using an injectable stem cell scaffold with controlled physical properties.

Methods: Micro- and nano-porous cell scaffolds were synthesized by direct and lyotropic liquid crystalline (LLC) templating, respectively, of photopolymerizable pre-polymers. Pore size and density were controlled using microfabrication techniques and surfactant (LLC) type and concentration. These physical features were characterized using scanning electron microscopy (SEM), small-angle x-ray scattering (SAXS), and polarized light microscopy (PLM). To test the effects of the varying physical features, the scaffolds were seeded with murine induced pluripotent stem (MiPS) cells, which were differentiated for defined amounts of time and characterized with SEM and immunohistochemistry.

Results: Scaffold physical features such as pore size and spacing were found to significantly influence the growth and differentiation of iPSCs. Similarly the presence of nanostructure, introduced via lyotropic liquid crystalline templating, improved the diffusion properties of the material and thus also positively influenced iPSC behavior. The optimized materials produced were shown to support the differentiation of induced pluripotent stem cells toward mature retinal cell phenotypes.

Conclusions: This work shows that physical properties of photopolymers can be successfully manipulated to meet the needs of photoreceptor regeneration applications. An optimized material of this kind; one that is biocompatible, implantable, and able to encourage growth and differentiation of mature retinal cell types, could lead to the successful transplantation of replacement cells and ultimately, restoration of retinal function in patients who suffer from late stage retinal degeneration.

Keywords: 721 stem cells • 687 regeneration • 688 retina  
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×