Purpose
Previous studies show that equator ring and peripheral ring prevented capsular bag opacification. And another study shows the aqueous humor inhibit lens epithelial cells development. In this study, we made a novel hydrophilic intraocular lense (IOL) with lateral walls. And we evaluated the prevention of posterior capsular bag opacification (PCO) by circulating aqueous humor in experimental rabbit studies.
Methods
NY-60 (HOYA) was remodeled that having 4 lateral walls (2.8mm height, Fig. 1) to expand posterior capsule after implanting into the lens capsule. And 8 holes around the peripheral of intraocular lens (IOL) optic and 1 each hole in center of the walls were made for role of aqueous humor circulate into a capsular bag (aqueous humor circulate IOL; AHC IOL). Eight weeks 6 albino rabbits weighting 2 kg were prepared and phacoemulsification in 2.65mm corneal insertion were performed. Control IOL (NY-60, HOYA) was implanted one eye and the AHC IOL was implanted another eye. After 1, 2 and 4 weeks, the IOL and PCO were observed using slit lump and tissue section was stained with hematoxylin-eosin and observed under light microscope. The PCO was quantified on the basis of the thickness of the lens epithelial cell layer on the central subcapsular area and compared among two groups.
Results
After 2 weeks, partial PCO was observed using slit lump in control group; however, no significant PCO was observed in AHC group. The thickness of developed lens epithelial cells in center of IOL was 59.4±67.9μm in control group and 8.3±3.2μm in AHC group at 4 weeks postoperatively. There is statistically significance (unpaired t-test).
Conclusions
Novel AHC IOL prevents PCO in experimental rabbit study. A device of IOL shape without well known sharp edge may prevent PCO.
Keywords: 567 intraocular lens •
652 posterior capsular opacification (PCO) •
637 pathology: experimental