March 1981
Volume 20, Issue 3
Free
Articles  |   March 1981
Ganglion cell distribution in the retina of the mouse.
Investigative Ophthalmology & Visual Science March 1981, Vol.20, 285-293. doi:
  • Views
  • PDF
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      U C Dräger, J F Olsen; Ganglion cell distribution in the retina of the mouse.. Invest. Ophthalmol. Vis. Sci. 1981;20(3):285-293.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
This content is PDF only. Please click on the PDF icon to access.
Abstract

The distribution of ganglion cells in the mouse retina was studied with the use of Nissl criteria for distinguishing cell types in the ganglion cell layer. Retrograde filling with horseradish peroxidase (HRP) from the optic fiber tract helped to validate Nissl criteria and served to identify displaced ganglion cells. We estimated a total of 117,000 nonvascular cells in the ganglion cell layer; of these, 70,000 were probably ganglion cells, and 47,000 could not be classified. The density of the presumed ganglion cells was highest-more than 8000 cells/mm2-just temporal to the optic disk, and lowest-less than 2000 cells/mm2-in the most dorsal retina. The retinal region with highest ganglion cell density was slightly elongated in a nasotemporal direction. About 2% of all HRP-filled ganglion cells had their cell bodies in the inner nuclear layer. These displaced cells differed in topographical distribution from the normally positioned ganglion cells: although occurring throughout the retina, they were more common along the retinal periphery. Measurements of ganglion cell areas showed a tendency toward larger size with eccentricity. At no retinal location did cell-size histograms reveal clearly separate size classes.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×