This content is PDF only. Please click on the PDF icon to access.
Abstract
When embryonic chick neural retinas are dissociated into a suspension of single cells and plated in stationary cultures, "flat cells" spread out and form a monolayer to which the neuronal cells attach. It has been shown previously that the flat cells are related to the Müller cell population of the retina. The neuronal cells form aggregates interconnected by bundles of axon-like fibers. The authors have been able to isolate relatively pure flat cells by shaking off the neuronal aggregates after 5 or 6 days of culture. In order to determine if the flat cells have a unique relationship with the neuronal cells, freshly dissociated neural retina cells were added to monolayers of flat cells and their behavior compared to that on chick embryo mesodermal cells. It has been observed by phase contrast and scanning electron microscopy that the growth behavior of the retina cells on flat cells is significantly different from that on mesodermal cells. On flat cells, neuronal retina cells form flat patches in which new growing flat cells fuse with the monolayer, and neuronal cells attach as single cells or small clusters. Axon-like fibers are present several hours after plating, and by day 4 an extensive network of fibers connects single cells and clusters on the surface of the monolayer. When retina cells are plated onto mesodermal cells, the cells form aggregates which are organized along the long axis of the mesodermal cells. The flat cells provide a unique substrate for the differentiation and neurite extension of neuronal cells from embryonic chick retina.