This content is PDF only. Please click on the PDF icon to access.
Abstract
Sections of the ciliary epithelium of adult sharks (Squalus acanthias) were mounted in Ussing-type chambers (area 0.2 cm2) for measurements of transepithelial potential difference (PD), short circuit current (SCC) and calculation of transepithelial resistance (R). In 15 preparations PD was aqueous side negative (-0.51 +/- 0.12 mV; SCC 18.3 +/- 2.5 microA cm-2; R 30.7 +/- 3.1 Ohm cm2). However, in 15 other preparations incubated in identical Ringer's solution PD was aqueous side positive (0.53 +/- 0.09 mV; SCC -19.6 +/- 2.3 microA cm-2; R 27.9 +/- 2.8 Ohm cm2). 10(-5) M ouabain or 10(-4) M furosemide were applied either to the aqueous or blood side of the isolated ciliary epithelium at transepithelial negative or positive PD. When the transepithelial PD was positive on the aqueous side ouabain decreased PD and SCC within 15 to 45 min. When the spontaneous PD was negative both PD and SCC decreased when ouabain was applied to the blood side. When the drug was given to the aqueous side a biphasic response (first stimulation, then inhibition) of PD and SCC was observed. Furosemide when given to the blood side (with aqueous side PD positive) or to the aqueous side (with aqueous side PD negative) decreased PD and SCC. However, a transient stimulation of both electrical parameters was observed when furosemide was applied to either the blood side (with aqueous side PD negative) or to the aqueous side (with aqueous side PD positive). The polarity and magnitude of PD and SCC probably depend on the relative activity of sodium and chloride pumps across the cell membranes of the non-pigmented and/or pigmented cell layer. However, additional transport mechanisms cannot be excluded.