This content is PDF only. Please click on the PDF icon to access.
Abstract
Oxygen-induced retinopathy (OIR) was produced by subjecting newborn albino rats to a 60% oxygen atmosphere for 14 days before they were killed and retinal analysis was done. The extent of OIR was measured by estimating the severity of retinal vasoobliteration in ink-perfused flat-mounted retinas. This was done with the aid of a digitizing camera and an image-analysis system designed to create binary images of the retinal blood vessels. Retinal levels of several antioxidant molecules also were measured. Alpha-tocopherol and ascorbic acid were reduced in oxygen-exposed rats by 34% and 20%, respectively, compared with room air-raised control animals. Retinal glutathione reductase, S-transferase, and peroxidase showed no differences between oxygen-treated and -untreated rats. Attempts to increase the newborn rats' retinal ascorbic acid by administering daily subcutaneous injections (5 g/kg body weight) to the mother rats were unsuccessful. However, the level of retinal alpha-tocopherol of newborn rats could be altered by dietary manipulation of the mothers. The mothers were fed diets containing either 1 g alpha-tocopherol acetate/kg food or none, starting 21-25 days before the birth of their litters and lasting throughout the exposure period. This treatment resulted in three- to fourfold differences in the retinal alpha-tocopherol levels of the pups. The combination of dietary and oxygen treatments also resulted in significant differences in retinal glutathione peroxidase activity, with the vitamin E-deprived, oxygen-exposed group having highest levels. Newborn rats both supplemented with and deprived of alpha-tocopherol had less vasoobliteration than did those nursed by mothers fed rat chow.