This content is PDF only. Please click on the PDF icon to access.
Abstract
PURPOSE: To determine the presence of vasoactive intestinal peptide (VIP) receptor (VIPR) subtypes in the lacrimal gland and to determine if the components of the VIP signaling pathway for protein secretion also are present. METHODS: Immunofluorescence studies using conventional fluorescence microscopy or confocal microscopy were performed on fixed sections from rat lacrimal glands using antibodies raised against VIPRs types I and II, and four antibodies against five isoforms of adenylyl cyclase (AC) (II, III, IV, V/VI). Guanine nucleotide binding (G) proteins were detected by Western blotting. Changes in intracellular [Ca2+] ([Ca2+]i) were measured on fura-2-loaded acini in response to VIP. The effect of a myristoylated peptide corresponding to the pseudosubstrate sequence of protein kinase inhibitor (myr-PKI), the endogenous inhibitor of cyclic AMP (cAMP)-dependent protein kinase (PKA), was tested on VIP-stimulated peroxidase secretion. RESULTS: The VIPRs, types I and II, were found on the basolateral membranes of acinar and ductal cells and on myoepithelial cells. Western blotting showed the presence of alpha subunits of Gs, Gi3, G0 and G beta. The AC II was found exclusively on myoepithelial cells; AC IV was located intracellularly in all cells; AC III was found on ducts and possibly nerves; no AC V/VI was detected. The VIP (10(-8) M) caused a small but significant increase in [Ca2+]i of 26 +/- 9 nM. The VIP-stimulated protein secretion was inhibited 71% by myr-PKI. CONCLUSIONS: All components of the VIP signal transduction pathway in the lacrimal gland were present. These findings are consistent with a pathway where VIP released from parasympathetic nerves binds to VIPRs types I and II, activating G proteins, which in turn stimulate AC present on myoepithelial and acinar cells. The AC increases the intracellular cAMP concentration, which activates PKA to stimulate protein secretion. The VIP also stimulated Ca2+ influx, which could play a role in secretion.