This content is PDF only. Please click on the PDF icon to access.
Abstract
Wide-field specular microscopy, fluorophotometry, pachymetry, and scanning electron microscopy are used to characterize a reproducible, in vivo model of corneal endothelial injury and recovery in the rabbit. Following an 8-mm central cryo-injury, the cornea remains thickened for as long as 3 weeks. Mean endothelial permeability to fluorescein is above normal for 10 days following injury, but by 14 days postinjury the endothelial permeability to fluorescein is not statistically significantly different from preinjury control values, thus indicating that endothelial permeability probably returns to normal by approximately 2 weeks postinjury. Cell morphology, as determined by scanning electron microscopy, is also essentially normal by 2 weeks postinjury. Endothelial permeability appears to recover before stromal thickness normalizes, suggesting a lag in recovery of endothelial pump function.