This content is PDF only. Please click on the PDF icon to access.
Abstract
A newly developed phosphorescence imaging technique was used to generate two-dimensional maps of intravascular oxygen tension (PO2) in the optic nerve head (ONH) and retina of the cat to study the effects of acute moderate increases in intraocular pressure (IOP) on the ONH and retinal PO2. Both the ONH and retinal PO2 were remarkably well maintained as the IOP increased; hypoxia developed only after the blood flow to the eye was stopped. Because ONH hypoxia was not observed during IOP elevation, a lack of oxygen may not be a major cause of glaucomatous damage, although the effects of chronically elevated IOP on the PO2 remain to be evaluated. Because this imaging technique was noninvasive and required only a small bolus injection of a nontoxic oxygen probe, the authors anticipate that it will find significant application in the study of many ocular vascular diseases and glaucoma.