The study included 253 eyes of 253 patients with a mean ± SD age at baseline of 63 ± 12 years. One hundred forty-five (57%) patients were women. Median follow-up time was 4.1 years (first quartile, 3.0 years; third quartile, 5.0 years). From the 253 eyes included in the study, 105 (42%) had a diagnosis of glaucoma, and 148 (58%) were considered to have suspected glaucoma. Median (first quartile, third quartile) MD and PSD of the visual field closest to the baseline imaging test date in glaucomatous eyes were −2.79 dB (−4.77, −1.80) and 3.13 dB (2.43, 5.67). Corresponding values for eyes with suspected glaucoma were −0.56 dB (−1.39, −0.06) and 1.59 dB (1.42, 1.86).
Of the 253 eyes, 31 (13%) showed progression over time by optic disc stereophotographs and/or visual fields. Of the 31 progressing eyes, 13 (42%) showed progression only by SAP GPA, 12 (39%) only by optic disc stereophotographs, and 6 (19%) by both methods.
Table 1 shows baseline Stratus OCT measurements in progressing and nonprogressing eyes.
To illustrate the random coefficient models used in the study, we report in
Table 2 the results of the model when applied to investigate changes in the Stratus OCT average RNFL thickness parameter. Mean baseline average RNFL thickness was significantly lower in progressors compared with nonprogressors (variable PROG; β
1 = −12.5 μm;
P < 0.001). The mean rate of change in RNFL thickness was −0.72 μm/y in progressors compared with 0.14 μm/y in nonprogressors. The significance (
P = 0.004) of the interaction term (β
3; PROG × TIME) indicates that the difference between rates of RNFL loss over time in the two groups was statistically significant. As the nonprogressor group was used as reference category (0 in the variable PROG), the coefficient of the variable TIME (β
1) indicates the rate of loss in the nonprogressing group (as the interaction term PROG × TIME will be 0). The mean rate of change in nonprogressors was not significantly different from 0 (
P = 0.179). To obtain the rate of loss in the progressing group, it is necessary to add the coefficient β
1 (0.14 μm/y) to that of the interaction term β
3 (−0.86 μm/y), which results in −0.72 μm/y.
Figure 1 shows the rates of change versus baseline Stratus OCT average RNFL thickness measurements in progressors and nonprogressors. The area under the ROC curve for discriminating progressors versus nonprogressors with the Stratus OCT average RNFL thickness was 0.83 (95% CI, 0.74–0.92).
Table 3 shows rates of change in the other Stratus OCT RNFL thickness parameters as well as the corresponding areas under the ROC curves, to discriminate progressors from nonprogressors. The parameter inferior average had the largest area under the ROC curve of 0.84 (95% CI, 0.77–0.92), although it was similar to the average thickness parameter.
Table 4 shows mean rates of change in the Stratus OCT ONH topographic parameters in progressors versus nonprogressors, as well as the corresponding areas under the ROC curves. A statistically significant difference between mean rates of change in progressors versus nonprogressors was observed only for the parameter cup area. For this parameter, the mean rate of change in progressors was 0.035 mm
2/y compared with 0.008 mm
2/y in nonprogressors (
P = 0.011). However, the ability to discriminate progressors from nonprogressors for this parameter was poor, with an ROC curve area of only 0.66.
Figure 2 shows rates of change versus baseline Stratus OCT cup area measurements in progressors and nonprogressors.
Table 5 shows mean rates of change in the Stratus OCT macular thickness parameters in progressors versus nonprogressors and the corresponding areas under the ROC curves. No statistically significant differences were found in mean rates of change between progressors and nonprogressors for any of the macular thickness parameters.
Figure 3 shows rates of change versus baseline Stratus OCT average macular thickness in progressors and nonprogressors. None of the macular thickness measurements was able to successfully discriminate progressors from nonprogressors, as is evident from the ROC curve areas close to 0.5 for all parameters. The macular thickness parameter with largest ROC curve area was inferior inner macular thickness with an ROC curve area of 0.64 (95% CI, 0.51–0.76).
Figure 4 shows the ROC curves for rates of change of the parameters with largest areas under the ROC curves to discriminate progressors versus nonprogressors for each scanning area: inferior RNFL thickness, cup area, and inferior inner macular thickness. The ROC curve area for inferior RNFL thickness was significantly higher than that for cup area (
P = 0.003) and inferior inner macular thickness (
P = 0.003).
Figure 4 also shows the ROC curve for the parameter average RNFL thickness.
Because of the differences in baseline measurements of Stratus OCT parameters between progressors and nonprogressors, we also built models for each parameter incorporating baseline measurements and their interactions with time as fixed-effects covariates. These models enabled the evaluation of rates of change in progressors and nonprogressors while adjusting for baseline differences and also the investigation of the effect of baseline measures on the ability to detect change over time. The results were similar to models without the baseline covariates. For average RNFL thickness, for example, the mean rates of change for progressors and nonprogressors were −0.77 μm/y versus 0.02 μm/y, respectively (P = 0.049), for an adjusted baseline average RNFL thickness of 90 μm. We were not able to find a statistically significant effect of baseline measurements on the rate of change over time (P = 0.979).