The PS-SD-OCT device used in this study is described elsewhere.
18 In brief, the system is capable of obtaining several parameters simultaneously: intensity (as in standard OCT imaging), retardation (phase shift introduced by birefringence between two orthogonal linear polarization states), fast axis orientation (birefringent axis orientation of the sample relative to the orientation of the instrument), and degree of polarization uniformity. The instrument is operated at an A-scan rate of 20,000 A-scans per second for each polarization channel, allowing the recording of 3D data sets covering a scan field of 15° × 15° and consisting of 1000 × 60 × 1024 pixels (x-y-z direction) in approximately 3 seconds. The total imaging depth was approximately 3 mm. The details of the segmentation algorithm used to identify the retinal pigment epithelium were recently published elsewhere.
19 Subsumed, the algorithm is based on the intrinsic tissue property of the retinal pigment epithelium that scrambles the polarization state of the backscattered light.
17 This polarization scrambling can be observed in a random variation of retardation (
Fig. 1B, greenish band marked with an arrow) and axis orientation values from speckle to speckle. For a better description of this random variation, we calculated the elements of the Stokes vectors of the beam backscattered from the sample. With the elements of the Stokes vector, a degree of polarization (DOP) can be calculated. Note that because OCT is a coherent imaging technique, the DOP will always be 1 if calculated at each single data point. However, if we average Stokes vectors over adjacent pixels by calculating the mean value of each Stokes vector element within a rectangular window (that is much larger than the speckle size), we can derive a quantity that we called the “degree of polarization uniformity” (DOPU). We used a floating window (size 15(
x) × 6(
z) pixels, or ∼70(
x) × 18(
y) μm) for all calculations of the DOPU presented in this article (
Fig. 1).
Figure 1C shows an image containing DOPU information of a patient with drusen. The outline of the retinal pigment epithelium (green/blue band) is clearly visible and shows focal elevations of the drusen, as expected. To calculate retinal thickness maps, we used median filtering before the surface detection (edge detection) and defined the distance from the detected retinal surface to the segmented retinal pigment epithelium as retinal thickness. RPE elevation maps are generated by the arbitrary depth position of the segmented retinal pigment epithelium after subtraction of a mean position value (calculated by averaging all RPE positions in the
y-direction). This procedure roughly removes influences from the relative position of the retina. To account for the anisotropic sampling of the generated images, all images were interpolated in the
y-direction (by a factor of ∼10).