September 2001
Volume 42, Issue 10
Free
Biochemistry and Molecular Biology  |   September 2001
Mutations in ABCR (ABCA4) in Patients with Stargardt Macular Degeneration or Cone-Rod Degeneration
Author Affiliations
  • Christine E. Briggs
    From the Ocular Molecular Genetics Institute, Massachusetts Eye and Ear Infirmary, Boston; the
  • David Rucinski
    From the Ocular Molecular Genetics Institute, Massachusetts Eye and Ear Infirmary, Boston; the
  • Philip J. Rosenfeld
    Bascom Palmer Eye Institute, University of Miami School of Medicine, Florida;
  • Tatsuo Hirose
    Schepens Retina Associates, Boston, Massachusetts; and the
  • Eliot L. Berson
    Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.
  • Thaddeus P. Dryja
    From the Ocular Molecular Genetics Institute, Massachusetts Eye and Ear Infirmary, Boston; the
Investigative Ophthalmology & Visual Science September 2001, Vol.42, 2229-2236. doi:
  • Views
  • PDF
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Christine E. Briggs, David Rucinski, Philip J. Rosenfeld, Tatsuo Hirose, Eliot L. Berson, Thaddeus P. Dryja; Mutations in ABCR (ABCA4) in Patients with Stargardt Macular Degeneration or Cone-Rod Degeneration. Invest. Ophthalmol. Vis. Sci. 2001;42(10):2229-2236.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

purpose. To determine the spectrum of ABCR mutations associated with Stargardt macular degeneration and cone–rod degeneration (CRD).

methods. One hundred eighteen unrelated patients with recessive Stargardt macular degeneration and eight with recessive CRD were screened for mutations in ABCR (ABCA4) by single-strand conformation polymorphism analysis. Variants were characterized by direct genomic sequencing. Segregation analysis was performed on the families of 20 patients in whom at least two or more likely pathogenic sequence changes were identified.

results. The authors found 77 sequence changes likely to be pathogenic: 21 null mutations (15 novel), 55 missense changes (26 novel), and one deletion of a consensus glycosylation site (also novel). Fifty-two patients with Stargardt macular degeneration (44% of those screened) and five with CRD each had two of these sequence changes or were homozygous for one of them. Segregation analyses in the families of 19 of these patients were informative and revealed that the index cases and all available affected siblings were compound heterozygotes or homozygotes. The authors found one instance of an apparently de novo mutation, Ile824Thr, in a patient. Thirty-seven (31%) of the 118 patients with Stargardt disease and one with CRD had only one likely pathogenic sequence change. Twenty-nine patients with Stargardt disease (25%) and two with CRD had no identified sequence changes.

conclusions. This report of 42 novel mutations brings the growing number of identified likely pathogenic sequence changes in ABCR to approximately 250.

Stargardt macular degeneration is characterized by the onset of central vision loss, usually by 20 years of age, progressive bilateral atrophy of the retinal pigment epithelium in the macula, accumulation of a lipofuscin-like substance in the retinal pigment epithelium, and a reduced foveal cone ERG. 1 2 3 4 It is recessively inherited and has an incidence of approximately 1 in 10,000. Mutations in the ABCR gene, located within chromosome 1p13, have been identified as a cause of recessive Stargardt macular degeneration. 5 6 7 8 Fundus flavimaculatus is allelic and is regarded by some as the same disorder with a later onset of symptoms and slower progression. 3 6 9 10 11 Unidentified loci linked to dominant forms of juvenile macular degeneration have been mapped to chromosomes, 6q11-14 (STGD3) and 4p (STGD4). 12 13 14  
Recessive mutations in ABCR have been found in patients with Stargardt macular degeneration, fundus flavimaculatus, cone–rod degeneration (CRD; a panretinal photoreceptor degeneration with predominant loss of cone function that affects the macula early in its course) and retinitis pigmentosa (a panretinal photoreceptor degeneration usually associated with intraretinal pigmentary deposits). 5 15 16 17 18 19 20 21 22 23 To date, approximately 200 mutations in ABCR have been found in patients with these diseases. 
We report the results from an analysis of ABCR in 118 patients with juvenile macular degeneration and 8 with CRD. 
Materials and Methods
Ascertainment of Patients
The methods used in this study conformed to the tenets of the Declaration of Helsinki and received approval from the Institutional Review Boards at the Massachusetts Eye and Ear Infirmary and Harvard Medical School. Informed consent was obtained from all patients and family members who participated in the study. Patients with Stargardt macular degeneration were recruited from the Berman-Gund Laboratory (83 patients) and the Bascom Palmer Eye Institute (35 patients). All patients with Stargardt macular degeneration had unaffected parents by history or clinical evaluation. All had reduced central visual acuity before age 30 and characteristic fundus changes of Stargardt macular degeneration. In addition, all patients had diagnostic fluorescein angiograms and/or ERGs consistent with the diagnosis of Stargardt macular degeneration. ERGs showed full-field rod responses that were normal and full-field cone responses that were either normal or slightly reduced and delayed. Foveal ERGs were abnormal in every patient in whom they were measured. Fluorescein angiography revealed a dark choroid in those patients so evaluated. 
We also included eight patients with CRD in this mutation screen (five from the Berman-Gund Laboratory, two from the Bascom Palmer Eye Institute, and one from Schepens Retina Associates). Patients with CRD had unaffected parents. Ophthalmoscopy revealed panretinal degeneration affecting the macula more severely. Patients had severely reduced full-field cone ERG amplitudes (reduced 90% or more), moderately reduced cone–rod ERG amplitudes (reduced approximately 50% or more), and markedly delayed cone implicit times (≥40 msec; normal, ≤32 msec). Mixed cone–rod responses were typically 30 times larger than cone-isolated responses in young patients with this condition. 
Venous blood samples were obtained from participating patients and some of their relatives after informed consent was received. Leukocyte DNA was purified according to standard methods. 
Detection of Sequence Changes
DNA samples were screened with the single-strand conformation polymorphism (SSCP) technique for sequence changes in the 50 exons of ABCR (primer sequences are available at a Web site provided by the Massachusetts Eye and Ear Infirmary http://eyegene.meei.harvard.edu/OMGI/ABCR/primers.html). Each exon and 6 to 100 bp of flanking intron sequence were amplified from 20 ng of leukocyte DNA in 20 μl of a solution containing 20 μM dATP, dTTP, and dGTP; 2 μM dCTP, including 0.6 μCi[ -32P]-dCTP (3000 Ci/mmol); 20 mM tris hydrochloride (pH 8.4 or 8.6); 0.25 to 5.0 mM MgCl2; 50 mM KCl; 0.1 mg/ml bovine serum albumin; 20 pmol of each primer; 0.25 U Taq polymerase; and 0% or 10% dimethyl sulfoxide (DMSO). Conditions for the amplification of each exon were optimized for [MgCl2], 0% or 10% DMSO, annealing temperature, and pH. In some cases, primer sets for two amplicons with a difference in size of at least 50 bp were combined in the same amplification reaction mixture. Samples were heated to 95°C for 4.5 minutes and incubated for 22 to 27 cycles of the following temperature sequence: 30 seconds at 94°C, 30 seconds at 52°C to 60°C, and 40 seconds at 72°C. Samples underwent a final incubation at 72°C for 5 minutes. After amplification, samples were diluted 1:1 with a solution of 40% formamide, 5 mM EDTA, 0.05% SDS, 0.25% bromphenol blue, 0.25% xylene cyanol, and 0.5× TBE (45 mM Tris-base, 45 mM boric acid, 1 mM disodium EDTA, pH 8.3). The amplified DNA was heat denatured (95°C for 3 minutes), and the resultant single-stranded fragments were separated by gel electrophoresis through 6% polyacrylamide TBE gels, with or without 10% glycerol or through a 5% polyacrylamide gel with TME (30 mM tris, 35 mM 2-[N-morpholino]ethanesulfonic acid, and 1 mM EDTA) 24 at 8 to 16 W for 8 to 16 hours. Gels were transferred to Whatman paper (Whatman, Inc., Clifton, NJ), dried, and analyzed by autoradiography. DNA fragments that migrated at rates different from wild-type fragments were evaluated by direct genomic sequencing, according to standard methods. 
Individuals without a history of retinal degeneration or blood relatives without retinal degeneration were used as control subjects. Normal control subjects were screened for every likely pathogenic sequence change found in at least 6 of the 126 patients screened. 
Neutral and intron sequence changes not affecting the canonical splice-acceptor or splice-donor sites were analyzed for their likelihood of creating or destroying splice sites, by using the neural network software that is available at a Web site provided by the Berkeley Drosophila Genome Project, University of California, Berkeley (www.fruitfly.org/seq_tools/splice.html). 25  
Results
Sequence Changes Identified
On analyzing 118 patients with Stargardt macular degeneration and 8 with CRD, we identified a total of 118 sequence changes (Table 1) , 77 of which were likely to be pathogenic (Fig. 1) . Forty-two of these 77 likely pathogenic sequence changes have not been previously reported. Twenty-one of the changes (including 15 novel changes) were interpreted as obviously null mutations: One was a missense change affecting the initiation codon (Met1Val), four were nonsense mutations, four changed canonical splice-site donor or acceptor sites, and 12 were frameshifts caused by the insertion or deletion of one or more base pairs (Table 1) . We have categorized the splice-site mutation IVS13+2T→C as a likely null mutation, although it may only reduce splice donor function because the dinucleotide GC is occasionally found as a splice donor in some genes. 
There were a total of 61 missense changes (26 novel) and a novel in-frame deletion of a consensus glycosylation site (deletion of Lys13-Trp15). Ten missense changes were found in 6 or more patients each. From 95 to 190 normal control individuals were evaluated for the presence of these 10 missense changes. Five of these 10 changes were statistically significantly less frequent in control subjects and were thus considered likely to be pathogenic. Specifically, Leu541Pro, Pro1380Leu, Gly1961Glu, and Leu2027Phe were not identified in any of the control individuals (P < 0.04). Gly863Ala was detected in 9 of 252 patient alleles and 2 of 380 normal control alleles tested (P = 0.009), and it was also considered pathogenic. Four missense changes, Arg212His, His423Arg, Arg943Gln, and Pro1948Leu, were found at approximately equal frequency among patients and normal control subjects (P > 0.05 by Fisher’s two-tailed analysis) and were thus categorized as nonpathogenic polymorphisms. Asn1868Ile was less frequent in patients with Stargardt disease than in control subjects (42/252 patient alleles and 50/170 control alleles; P = 0.002 by Fisher’s two-tailed analysis) and was therefore considered nonpathogenic. The abundance of this allele in control subjects may reflect an unappreciated difference in the ethnic ancestry of the patients versus the control subjects in this study. 
A rarely encountered missense change, Ala1637Thr, was interpreted as nonpathogenic because it was found in a patient (032-066) who also had two obviously null mutations determined to be allelic by segregation analysis, Lys356Ter and Gln1513(insC). Another change, Ala1038Val, was found in two patients (032-023 and 034-035), and in both cases segregation analysis showed that it was in cis with Leu541Pro, a combination also reported by Rivera et al. 23 We interpreted Leu541Pro as pathogenic because it was found without the Ala1038Val change more frequently in patients than in control subjects. However, Sun et al. 26 have shown abnormal ABCR function associated with either Ala1038Val or Leu541Pro, and it is therefore possible that both these changes are pathogenic in isolation. The remaining 49 missense changes were each found in five or fewer patients with Stargardt-CRD and were categorized as likely to be pathogenic. In all, 26 of the 55 likely pathogenic missense changes were novel. 
We detected 35 isocoding substitutions and intron changes. These were all interpreted as nonpathogenic. Only one of these, Val2244Val, was predicted to possibly change a splice site. This sequence change affects the first codon of exon 49. Splice-site prediction software identifies the expected splice-acceptor site at the end of intron 48 in the wild-type sequence (probability score 0.98). This changes to a predicted splice-donor site in the mutant sequence (probability score 0.70). Despite this computer-based prediction of an effect on intron splicing, the Val2244Val change was interpreted as nonpathogenic because one of the two patients who were heterozygous for this change (032-066) also had two obvious null mutations determined to be allelic by segregation analysis. 
Likely Pathogenic Sequence Changes Found in 95 of 126 Patients
Forty-nine patients with Stargardt and three with CRD had at least two likely pathogenic sequence changes. An additional three with Stargardt and two with CRD were homozygotes for a likely pathogenic sequence change (Leu244Pro, Pro1380Leu, Arg1640Gln, Cys2150Tyr, or Val1973[delG]). We conducted segregation analyses in 20 of these 57 patients’ families, and the results showed that the identified sequence changes segregated as expected for pathogenic alleles (Fig. 2)
One family had an index member (034-045) who was heterozygous for the missense changes Ile824Thr and Gly1961Glu. The Gly1961Glu allele 27 was found to have been inherited from the patient’s mother, but the Ile824Thr allele was not detected in either parent or in any sibling. The results of genotyping analysis of six microsatellite markers in the patient and her parents were consistent with the designated paternity and we interpreted the Ile824Thr allele as a de novo mutation in this patient. The markers were D13S1316 (The Genome Database [GDB] accession number 614907), D13S1325 (GDB 615130), D13S1236 (GDB 601655), D13S1275 (GDB 604479), and D19S254 (GDB 189257; RB1.20) 28 (results not shown). We did not conduct further studies to determine whether the Ile824Thr and Gly1961Glu changes were allelic in this index patient. 
Thirty-seven patients with Stargardt disease and one with CRD each had only one detectable sequence change that we categorized as likely to be pathogenic. There were a total of 24 unique sequence changes among these 38 patients. Five were null mutations, one was an in-frame deletion, and 18 were missense changes. Eight of the missense changes were found in at least one other index patient who was a compound heterozygote with another likely pathogenic sequence change. Of the remaining 10 missense changes, 8 affect amino acid residues that are identical in the mouse abc1 29 and human ABCR proteins (Table 2) . Four of these missense changes also occur in consensus sequences for functional motifs (Table 2)
Twenty-nine patients with Stargardt disease and two with CRD had no detectable sequence changes that were considered likely to be pathogenic. 
Nucleotide 2588G →C (Gly863Ala) and Nucleotide 2828G→A (Arg943Gln)
One likely pathogenic missense change, Gly863Ala, was frequently associated with a presumed nonpathogenic missense change, Arg943Gln. In fact, all 9 patients who were heterozygous carriers of Gly863Ala also carried Arg943Gln. Maugeri et al. 21 also found an association between the Gly863Ala and Arg943Gln changes, but they were unable to determine whether Gly863Ala by itself was pathogenic. In our study, the Arg943Gln change was present in five other patients without Gly863Ala, and it was present without Gly863Ala in 9 of 190 control alleles. In addition, a recently reported evaluation of the Gly863Ala mutant protein has shown that it has abnormal function in vitro. 26 Taken together, these results indicate that Gly863Ala by itself is likely to be pathogenic and Arg943Gln by itself is not. 
Seven of the nine patients with Stargardt disease who were carrying Gly863Ala heterozygously also carried another missense change. Segregation analysis was conducted in the families of four of these 7 patients and the results in all four indicated that the two changes were allelic. Two patients who were heterozygous for the Gly863Ala allele had no other detectable changes likely to be pathogenic. 
Nullizygosity Associated with Panretinal Degeneration
We found putative null mutations (e.g., frameshifts, nonsense mutations, or intron splice-site alterations) in 26 (10%) of the 252 alleles screened in this study. Eleven of these patients were compound heterozygotes with one null mutation and a second missense mutation. All had Stargardt macular degeneration. Only four had two allelic null mutations and all four of these patients had the diagnosis of CRD. The ERGs recorded from three of these patients (007-014, 035-002, and 032-066 at ages 24, 21, and 19 years, respectively) showed severely reduced cone amplitudes in response to 30-Hz flickering light (0.2, 0.4, and 6.8 μV, respectively; normal, ≥50 μV) and showed moderately reduced rod-dominated amplitudes in response to single flashes of light (129, 170, and 180 μV, respectively; normal, ≥350μ V). The fourth patient (032-081) declined evaluation with an ERG. This is in contrast to patients with Stargardt disease who typically have full-field rod and cone ERG amplitudes in the normal or near-normal range at comparable ages. 
Discussion
We report 118 ABCR sequence changes, including 77 categorized as pathogenic. The 77 likely pathogenic changes include 21 null mutations (15 novel), 55 missense mutations (26 novel), and one novel deletion of a consensus glycosylation site. Of the 236 mutant alleles in the 118 patients with Stargardt macular degeneration, we found mutations in 141 (assuming that all patients with two likely pathogenic mutations were compound heterozygotes). The percentage of Stargardt alleles with an identified ABCR mutation (60%) is comparable to that found in another survey of a large group of patients: Lewis et al. 20 found mutations in 57% of the 300 alleles in a set of 150 unrelated subjects. 
The absence of detected mutations in 29 patients with Stargardt in our survey is not strong evidence for a second recessive Stargardt disease macular degeneration gene besides ABCR. It is more likely that we missed mutations that lie outside the regions of the gene that were screened (e.g., intron sequence far from flanking exons, the promoter region and the 5′ and 3′ untranslated regions) or that the SSCP mutation screening technique failed to detect some mutations, especially large deletions or insertions that encompass one or both primer sites used for a PCR amplification. Furthermore, we conducted a search for examples of Stargardt macular degeneration not linked to the ABCR locus. Of the 29 index patients with no detected ABCR mutations, only one (032-070) had both an affected sibling who was willing to participate in our research and an informative polymorphism in the ABCR gene. The index patient and the affected sibling had identical ABCR alleles (data not shown). Thus, even in this multiplex family with Stargardt macular degeneration and no identified ABCR mutations, segregation analysis was consistent with ABCR being the disease locus. 
The criteria we and others used to classify sequence variants as“ likely” to be pathogenic are not perfect. It is possible that some of the likely pathogenic mutations, especially the missense changes, are nonpathogenic. In addition, because segregation analysis was not always possible or was not always informative, some of the patients with two likely pathogenic changes may not be compound heterozygotes but rather may have a complex allele with both changes in cis. Some of the missense mutants previously associated with Stargardt macular degeneration are reported to have abnormal adenosine triphosphatase (ATPase) activity stimulated by all-trans retinal in vitro. 26 It is not yet clear whether this assay reliably distinguishes pathogenic missense variants from those that are nonpathogenic. 
Of the eight patients carrying Gly863Ala reported by Maugeri et al., 21 five were compound heterozygotes with a null mutation affecting the other allele. This led to speculation that the Gly863Ala sequence change is only pathogenic when present in compound heterozygotes who also carried a null allele. However, none of our patients with this change had a detected null allele. Rather, seven had another missense change and two had no other detectable changes likely to be pathogenic. 
ABCR mutations have been reported to cause a spectrum of vision disorders including Stargardt macular degeneration, CRD, and atypical retinitis pigmentosa. 15 16 17 18 19 20 21 27 Maugeri et al. 21 and others have proposed a model in which two ABCR alleles with severe (null) mutations result in a visual disorder with features that are more severe than typical Stargardt macular degeneration and that they have called atypical retinitis pigmentosa. According to this model, compound heterozygosity for a severe (null) and a moderately severe mutation causes CRD, whereas two moderately severe mutations or a mild and a severe allele together cause Stargardt macular degeneration. Our findings support this model because all four patients with allelic null mutations (035-002, 032-066, 032-081, and 007-014) whom we encountered had CRD, a panretinal degeneration much more severe than typical Stargardt macular degeneration. A fifth patient with CRD (032-030) was homozygous for the missense change Arg1640Gln and a sixth patient (007-009) had the missense change Gly2146Asp and no other sequence changes that we were able to detect. (The two remaining patients with CRD had no detected ABCR mutations.) Although we have determined that all six of these patients have CRD, the late stages of CRD can have fundus features and extinguished ERGs that are indistinguishable from the late stages of retinitis pigmentosa. Therefore, it may be clearer to consider together in one category both CRD and atypical retinitis pigmentosa caused by severe or null ABCR mutations. 
 
Table 1.
 
ABCR Sequence Changes Found in 118 Patients with Stargardt and 8 with CRD
Table 1.
 
ABCR Sequence Changes Found in 118 Patients with Stargardt and 8 with CRD
Patient ID Mutations (Amino Acid Based) Sequence Change (Nucleotide Based) Het/Hom Other Sequence Changes
21 Null Mutations
071-004 Met1Val ATG → GTC Het None
035-002* Ser84(insCAAA) 30 251ins4 Het IVS36 + 1G → A
034-039 Ser84(insCAAA) 30 251ins4 Het Gly1961Glu
032-018 Arg152Ter 23 CGA → TGA Het Arg2107Cys
032-005 Ala222(del13bp) 666del13 [AAAGACGGTGCGC] Het None
032-039 Ala222(del13bp) 666del13 [AAAGACGGTGCGC] Het None
032-060 [Ser278(delT); Arg1300Gln] [832delT; CGA → CAA] Het Pro1486Leu
032-066* Lys356Ter AAG → TAG Het Gln1513(insC)
032-072 IVS13+ 2T → C Het Val77Glu
032-073 Arg681Ter 21 CGA → TGA Het Leu1388Pro
034-016 Ser1071(insGT) 31 3212insGT Het None
032-065 Ser1071(insGT) 31 3212insGT Het None
035-003 Ile1114(delC) 5 3340delC Het Pro1380Leu
007-014* IVS26+ 1G → A Het Asn1345(insCA)
007-014* Asn1345(insCA) 4034insCA Het IVS26+ 1G → A
032-066* Gln1513(insC) 4538insC Het Lys356Ter
032-010 Gln1513(insC) 4538insC Het None
032-024 Pro1570(delC) 16 4710delC Het Gly1961Glu
032-016 Thr1721 (delAC) delete AC @ nt 5161 Het Thr1525Met
035-002* IVS36+ 1G → A 23 Het Ser84(insCAAA)
034-031 Leu1741(del11) 5194del11 [GTGGTGGGCAT] Het Gly1961Glu
032-051 Trp1772Ter TGG → TGA Het None
032-022 IVS41-2delA Het Gly1961Glu
032-081* Val1973(delG) 5917delG Hom None
034-017 Gly2100(delG) 6300delG Het Gly1961Glu
55 Missense and One In-Frame Deletion
032-020 Cys54Tyr 15 TGC → TAC Het Gly863Ala
035-012 Cys54Tyr 15 TGC → TAC Het Arg1108Cys
071-007 Cys54Tyr 15 TGC → TAC Het Val935Ala
071-003 Asn58Lys AAC → AAG Het Leu1201Arg
032-069 Ala60Val 15 GCG → GTG Het None
032-028 Gly65Glu 16 GGA → GAA Het None
032-072 Val77Glu GTG → CAG Het IVS13+ 2T → C
034-013 Gln190His CAG → CAC Het Gly1961Glu
032-076 Leu244Pro CTG → CCG Hom None
032-012 Pro309Arg CCA → CGA Het Arg1300Gln
032-054 Phe525Cys TTT → TGT Het Ile1846Thr
032-046 Arg537Cys CGT → TGT Het Val989Ala
034-038 Arg537Cys CGT → TGT Het Gly863Ala
032-095 Leu541Pro 18 CTA → CCA Het None
034-022 Leu541Pro 18 CTA → CCA Het Leu2027Phe
035-001 Leu541Pro 18 CTA → CCA Het None
032-009 Leu541Pro 18 CTA → CCA Het None
032-023 [Leu541Pro 18 ; Ala1038Val 27 ] [CTA → CCA; GCC → GTC] Het Gly863Ala
034-035 [Leu541Pro 18 ; Ala1038Val 27 ] [CTA → CCA; GCC → GTC] Het Gly863Ala
032-011 Ala549Pro GCC → CCC Het Gly1961Glu
032-044 Gly550Arg GGA → AGA Het None
032-085 Arg602Gln CGG → CAG Het Val643Met
032-090 Gly607Arg GGG → AGG Het Leu2027Phe
032-085 Val643Met GTG → ATG Het Arg602Gln
032-042 Val767Asp 30 GTC → GAG Het Pro1486Leu
071-006 Val767Asp 30 GTC → GAG Het Ile1562Thr
032-014 Leu797Pro CTG → CCG Het Pro1486Leu
032-038 Trp821Arg 18 TGG → AGG Het None
034-045 Ile824Thr ATC → ACC Het Gly1961Glu
032-056 Gly863Ala 5 GGA → GCA Het None
032-091 Gly863Ala 5 GGA → GCA Het None
032-020 Gly863Ala 5 GGA → GCA Het Cys54Tyr
032-023 Gly863Ala 5 GGA → GCA Het [Leu541Pro; Ala1038Val]
034-011 Gly863Ala 5 GGA → GCA Het Cys1488Arg
034-015 Gly863Ala 5 GGA → GCA Het Thr1525Met
034-035 Gly863Ala 5 GGA → GCA Het [Leu541Pro; Ala1038Val]
034-036 Gly863Ala 5 GGA → GCA Het Cys2150Arg
034-038 Gly863Ala 5 GGA → GCA Het Arg537Cys
071-007 Val935Ala GTA → GCA Het Cys54Tyr
032-043 Arg943Trp CGG → TGG Het Arg1108Leu
032-046 Val989Ala GTT → GCT Het Arg537Cys
071-005 Arg1108Cys 18 CGC → TGC Het None
035-012 Arg1108Cys 18 CGC → TGC Het Cys54Tyr
032-043 Arg1108Leu 5 CGC → CTC Het Arg943Trp
032-097 Glu1122Lys 18 GAG → AAG Het None
035-019 Glu1122Lys 18 GAG → AAG Het None
071-003 Leu1201Arg 15 CTG → CGG Het Asn58Lys
032-012 Arg1300Gln CGA → CAA Het Pro309Arg
032-068 Arg1300Gln CGA → CAA Het None
032-013 Pro1380Leu 15 CCG → CTG Het Gly1961Glu
032-015 Pro1380Leu 15 CCG → CTG Het Gly1961Glu
032-027 Pro1380Leu 15 CCG → CTG Het Gly1961Glu
071-001 Pro1380Leu 15 CCG → CTG Hom None
034-020 Pro1380Leu 15 CCG → CTG Het Leu2027Phe
034-028 Pro1380Leu 15 CCG → CTG Het Gly1961Glu
034-044 Pro1380Leu 15 CCG → CTG Het Leu2027Phe
034-048 Pro1380Leu 15 CCG → CTG Het Gly1961Glu
035-003 Pro1380Leu 15 CCG → CTG Het Ile1114(delC)
032-073 Leu1388Pro CTG → CCG Het Arg681Ter
034-040 Trp1408Arg 15 TGG → CGG Het Arg1640Trp
035-013 Trp1408Arg 15 TGG → CGG Het Arg1640Trp
032-060 Pro1486Leu 20 CCA → CTA Het [Ser278(delT); Arg1300Gln]
032-014 Pro1486Leu 20 CCA → CTA Het Leu797Pro
032-025 Pro1486Leu 20 CCA → CTA Het Asp1531Asn
032-042 Pro1486Leu 20 CCA → CTA Het Val767Asp
034-011 Cys1488Arg 15 TGC → CGC Het Gly863Ala
032-034 Cys1490Tyr 15 TGC → TAC Het Ile1846Thr
032-084 Thr1525Met 15 ACG → ATG Het Arg2139Trp
032-016 Thr1525Met 15 ACG → ATG Het Thr1721(delAC)
032-021 Thr1525Met 15 ACG → ATG Het None
032-041 Thr1525Met 15 ACG → ATG Het None
034-015 Thr1525Met 15 ACG → ATG Het Gly863Ala
032-049 Asp1531Asn 15 GAC → AAC Het Gly1961Glu
034-019 Asp1531Asn 15 GAC → AAC Het None
032-025 Asp1531Asn 15 GAC → AAC Het Pro1846Leu
071-006 Ile1562Thr 27 ATT → ACT Het Val767Asp
034-040 Arg1640Trp 18 CGG → TGG Het Trp1408Arg
035-013 Arg1640Trp 18 CGG → TGG Het Trp1408Arg
032-030* Arg1640Gln CGG → CAG Hom None
032-019 Pro1776Leu CCC → CTC Het Gly1961Glu
032-034 Ile1846Thr 21 ATT → ACT Het Cys1490Tyr
032-054 Ile1846Thr 21 ATT → ACT Het Phe525Cys
032-011 Gly1961Glu 27 GGA → GAA Het Ala549Pro
032-013 Gly1961Glu 27 GGA → GAA Het Pro1380Leu
032-015 Gly1961Glu 27 GGA → GAA Het Pro1380Leu
032-019 Gly1961Glu 27 GGA → GAA Het Pro1776Leu
032-022 Gly1961Glu 27 GGA → GAA Het IVS41-2delA
032-024 Gly1961Glu 27 GGA → GAA Het Pro1570(delC)
032-027 Gly1961Glu 27 GGA → GAA Het Pro1380Leu
032-040 Gly1961Glu 27 GGA → GAA Het None
032-049 Gly1961Glu 27 GGA → GAA Het Asp1531Asn
034-013 Gly1961Glu 27 GGA → GAA Het Gln190His
034-017 Gly1961Glu 27 GGA → GAA Het Gly2100(delG)
034-021 Gly1961Glu 27 GGA → GAA Het None
034-025 Gly1961Glu 27 GGA → GAA Het None
034-028 Gly1961Glu 27 GGA → GAA Het Pro1380Leu
034-031 Gly1961Glu 27 GGA → GAA Het Leu1741(del11)
034-033 Gly1961Glu 27 GGA → GAA Het None
034-039 Gly1961Glu 27 GGA → GAA Het Ser84(insCAAA)
032-050 Gly1961Glu 27 GGA → GAA Het None
034-045 Gly1961Glu 27 GGA → GAA Het Ile824Thr
034-048 Gly1961Glu 27 GGA → GAA Het Pro1380Leu
032-003 Gly1977Ser 15 GGC → AGC Het Leu2027Phe
032-003 Leu2027Phe 5 CTC → TTC Het Gly1977Ser
032-090 Leu2027Phe 5 CTC → TTC Het Gly607Arg
034-006 Leu2027Phe 5 CTC → TTC Het None
034-020 Leu2027Phe 5 CTC → TTC Het Pro1380Leu
034-022 Leu2027Phe 5 CTC → TTC Het Leu541Pro
034-044 Leu2027Phe 5 CTC → TTC Het Pro1380Leu
035-011 Leu2027Phe 5 CTC → TTC Het None
032-063 Arg2030Gln 15 CGA → CAA Het None
032-093 Arg2030Gln 15 CGA → CAA Het None
071-002 Leu2035Pro CTT → CCT Het None
032-064 Val2050Leu 5 GTT → CTT Het None
032-061 Arg2107His 18 CGC → CAC Het None
032-018 Arg2107Cys CGC → TGC Het Arg152Ter
032-084 Arg2139Trp CGG → TGG Het Thr1525Met
007-009* Gly2146Asp GGC → GAC Het None
032-045 Cys2150Tyr 16 TGT → TGC Hom None
034-036 Cys2150Arg TGT → CGT Het Gly863Ala
034-026 Deletion Lys13-Trp15 38del9 [AGAACTGGA] Het None
034-037 Deletion Lys13-Trp15 38del9 [AGAACTGGA] Het None
Polymorphisms and Rare Variants Sequence Change Alleles Among 126 Patients (n) Alleles Among Controls (n) P , †
6 Nonpathogenic Missense Changes
Arg212His 23 CGC → CAC 8 10/(188) 0.3
His423Arg 23 CAC → CGC 34 14/(178) 0.09
Arg943Gln 27 CGG → CAG 15 9/(190) 0.7
Ala1637Thr GCC → ACC 1 Not determined
Asn1868Ile 21 AAT → ATT 41 50/(170) 0.002
Pro1948Leu 21 CCA → CTA 10 4/(190) 0.4
35 Intron and Isocoding Changes
Pro47Pro CCG → CCA
IVS3− 71delA
IVS3+ 20C → T
IVS3+ 26A → G
IVS3+ 92A → G
IVS6− 32T → C 23
Thr311Thr ACC → ACT
IVS9− 14C → T
IVS10+ 6insC
IVS10+ 11delG
Ala626Ala GCG → GCA
Leu988Leu CTC → CTT
IVS22− 34A → G
Pro1401Pro 21 CCC → CCA
IVS32− 38C → T 23
IVS32− 15C → T
IVS33− 16delGT 23
IVS35− 32G → A
IVS38− 50delA
IVS38− 10T → C
IVS39+ 6del12
[TGGTAGCCGAGG]: ins11
[CGGTCGAGGGC]
IVS40 − 25A → C
Leu1894Leu 21 CTG → CTC
IVS41− 10A → G
Leu1938Leu 23 TTA → TTG
Pro1948Pro 21 CCA → CCG
Ile2023Ile ATC → ATT
Ile2083Ile 27 ATC → ATT
IVS45+ 7G → A 32
Asp2095Asp 21 GAT → GAC
IVS48+ 21 C → T
IVS48− 3 T → C
IVS49− 85 C → T
IVS49+ 28 G → C
Val2244Val GTG → GTA
Figure 1.
 
Distribution of 77 ABCR mutations found in our patients. Numbers immediately above the bar indicate each exon number. Numbers within the boxes of the bar indicate the number of codons per exon. Numbers below the bar indicate the codon number at exon boundaries.
Figure 1.
 
Distribution of 77 ABCR mutations found in our patients. Numbers immediately above the bar indicate each exon number. Numbers within the boxes of the bar indicate the number of codons per exon. Numbers below the bar indicate the codon number at exon boundaries.
Figure 2.
 
Pedigrees of 20 patients in whom segregation analysis was conducted. Arrows: index cases. The ABCR alleles are indicated beneath or to the side of the symbol for each family member whose DNA was evaluated. The clinical findings of the three affected siblings in the family of the proband 032-030 with the R1640Q mutation have been previously reported. 33
Figure 2.
 
Pedigrees of 20 patients in whom segregation analysis was conducted. Arrows: index cases. The ABCR alleles are indicated beneath or to the side of the symbol for each family member whose DNA was evaluated. The clinical findings of the three affected siblings in the family of the proband 032-030 with the R1640Q mutation have been previously reported. 33
Table 2.
 
Missense Changes Found in Patients with No Other Detected ABCR Changes
Table 2.
 
Missense Changes Found in Patients with No Other Detected ABCR Changes
Patient ID Missense Change Mouse abc1 34 Mouse abc2 34 Human ABCC 35
032-069 Ala60Val Ala N/A Glu
032-028 Gly65Glu Gly N/A Leu
032-044 Gly550Arg* Gly N/A N/A
032-038 Trp821Arg, ‡ Trp N/A Trp
035-019, 032-097 Glu1122Lys Glu Glu Glu
032-063, 032-093 Arg2030Gln, † Arg Arg Arg
071-002 Leu2035Pro Phe Leu Met
032-064 Val2050Leu Phe Val Cys
032-061 Arg2107His Arg Arg Arg
007-009 Gly2146Asp, ‡ Gly Gly Gly
The authors thank Ileana Cantillo, Terri McGee, and Jennifer McEvoy for technical assistance. 
Stargardt K. Uber familiare, progressive Degeneration in der Makulagegend des Auges. Graefes Arch Klin Exp Ophthalmol. 1909;71:534–549. [CrossRef]
Hadden OB, Gass JD. Fundus flavimaculatus and Stargardt’s disease. Am J Ophthalmol. 1976;82:527–539. [CrossRef] [PubMed]
Noble KG, Carr RE. Stargardt’s disease and fundus flavimaculatus. Arch Ophthalmol. 1979;97:1281–1285. [CrossRef] [PubMed]
Sandberg MA, Jacobson SG, Berson EL. Foveal cone electroretinograms in retinitis pigmentosa and juvenile macular degeneration. Am J Ophthalmol. 1979;88:702–707. [CrossRef] [PubMed]
Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15:236–246. [CrossRef] [PubMed]
Kaplan J, Gerber S, Larget-Piet D, et al. A gene for Stargardt’s disease (fundus flavimaculatus) maps to the short arm of chromosome 1[ published correction appears in Nat Genet. 1994;6:214]. Nat Genet. 1993;5:308–311.
Anderson KL, Baird L, Lewis RA, et al. A YAC contig encompassing the recessive Stargardt disease gene (STGD) on chromosome 1p. Am J Hum Genet. 1995;57:1351–1363. [PubMed]
Hoyng CB, Poppelaars F, van de Pol TJ, et al. Genetic fine mapping of the gene for recessive Stargardt disease. Hum Genet. 1996;98:500–504. [CrossRef] [PubMed]
Franceschetti A. Ueber tapeto-retinale Degenerationen in Kindersalter. In: Entwicklung und Fortschitt in der Augenkeilkunde . 1963;107–120. Enke Verlag Stuttgart, Germany.
Fishman GA. Fundus flavimaculatus: a clinical classification. Arch Ophthalmol. 1976;94:2061–2067. [CrossRef] [PubMed]
Gerber S, Rozet JM, Bonneau D, et al. A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13. Am J Hum Genet. 1995;56:396–399. [PubMed]
Donoso LA, Frost AT, Stone EM, et al. Autosomal dominant Stargardt-like macular dystrophy. Arch Ophthalmol. 2001;119:564–570. [CrossRef] [PubMed]
Stone EM, Nichols BE, Kimura AE, et al. Clinical features of a Stargardt-like dominant progressive macular dystrophy with genetic linkage to chromosome 6q. Arch Ophthalmol. 1994;112:765–772. [CrossRef] [PubMed]
Kniazeva M, Chiang MF, Morgan B, et al. A new locus for autosomal dominant stargardt-like disease maps to chromosome 4. Am J Hum Genet. 1999;64:1394–1399. [CrossRef] [PubMed]
Cremers FP, van de Pol DJ, van Driel M, et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet. 1998;7:355–362. [CrossRef] [PubMed]
Gerber S, Rozet JM, van de Pol TJ, et al. Complete exon-intron structure of the retina-specific ATP binding transporter gene (ABCR) allows the identification of novel mutations underlying Stargardt disease. Genomics. 1998;48:139–142. [CrossRef] [PubMed]
Martinez-Mir A, Paloma E, Allikmets R, et al. Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR (Letter; Comment). Nat Genet. 1998;18:11–12. [CrossRef] [PubMed]
Rozet JM, Gerber S, Souied E, et al. Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet. 1998;6:291–295. [CrossRef] [PubMed]
Fishman GA, Stone EM, Grover S, et al. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol. 1999;117:504–510. [CrossRef] [PubMed]
Lewis RA, Shroyer NF, Singh N, et al. Genotype/phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet. 1999;64:422–434. [CrossRef] [PubMed]
Maugeri A, van Driel MA, van de Pol DJ, et al. The 2588G→C mutation in the ABCR gene is a mild frequent founder mutation in the western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am J Hum Genet. 1999;64:1024–1035. [CrossRef] [PubMed]
Maugeri A, Klevering BJ, Rohrschneider K, et al. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet. 2000;67:960–966. [CrossRef] [PubMed]
Rivera A, White K, Stohr H, et al. A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet. 2000;67:800–813. [CrossRef] [PubMed]
Kukita Y, Tahira T, Sommer SS, et al. SSCP analysis of long DNA fragments in low pH gel. Hum Mutat. 1997;10:400–407. [CrossRef] [PubMed]
Reese MG, Eeckman FH, Kulp D, et al. Improved splice site detection in Genie. J Comput Biol. 1997;4:311–323. [CrossRef] [PubMed]
Sun H, Smallwood PM, Nathans J. Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet. 2000;26:242–246. [CrossRef] [PubMed]
Allikmets R, Shroyer NF, Singh N, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science. 1997;277:1805–1807. [CrossRef] [PubMed]
Wiggs J, Nordenskjold M, Yandell D, et al. Prediction of the risk of hereditary retinoblastoma, using DNA polymorphisms within the retinoblastoma gene. N Engl J Med. 1988;318:151–157. [CrossRef] [PubMed]
Luciani MF, Chimini G. The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. EMBO J. 1996;15:226–235. [PubMed]
Simonelli F, Testa F, de Crecchio G, et al. New ABCR mutations and clinical phenotype in Italian patients with Stargardt disease. Invest Ophthalmol Vis Sci. 2000;41:892–897. [PubMed]
Nasonkin I, Illing M, Koehler MR, et al. Mapping of the rod photoreceptor ABC transporter (ABCR) to 1p21–p22.1 and identification of novel mutations in Stargardt’s disease. Hum Genet. 1998;102:21–26. [CrossRef] [PubMed]
Papaioannou M, Ocaka L, Bessant D, et al. An analysis of ABCR mutations in British patients with recessive retinal dystrophies. Invest Ophthalmol Vis Sci. 2000;41:16–19. [PubMed]
Suzuki R, Hirose T. Bull’s-eye macular dystrophy associated with peripheral involvement. Ophthalmologica. 1998;212:260–267. [CrossRef] [PubMed]
Luciani MF, Denizot F, Savary S, et al. Cloning of two novel ABC transporters mapping on human chromosome 9. Genomics. 1994;21:150–159. [CrossRef] [PubMed]
Klugbauer N, Hofmann F. Primary structure of a novel ABC transporter with a chromosomal localization on the band encoding the multidrug resistance-associated protein. FEBS Lett. 1996;391:61–65. [CrossRef] [PubMed]
Figure 1.
 
Distribution of 77 ABCR mutations found in our patients. Numbers immediately above the bar indicate each exon number. Numbers within the boxes of the bar indicate the number of codons per exon. Numbers below the bar indicate the codon number at exon boundaries.
Figure 1.
 
Distribution of 77 ABCR mutations found in our patients. Numbers immediately above the bar indicate each exon number. Numbers within the boxes of the bar indicate the number of codons per exon. Numbers below the bar indicate the codon number at exon boundaries.
Figure 2.
 
Pedigrees of 20 patients in whom segregation analysis was conducted. Arrows: index cases. The ABCR alleles are indicated beneath or to the side of the symbol for each family member whose DNA was evaluated. The clinical findings of the three affected siblings in the family of the proband 032-030 with the R1640Q mutation have been previously reported. 33
Figure 2.
 
Pedigrees of 20 patients in whom segregation analysis was conducted. Arrows: index cases. The ABCR alleles are indicated beneath or to the side of the symbol for each family member whose DNA was evaluated. The clinical findings of the three affected siblings in the family of the proband 032-030 with the R1640Q mutation have been previously reported. 33
Table 1.
 
ABCR Sequence Changes Found in 118 Patients with Stargardt and 8 with CRD
Table 1.
 
ABCR Sequence Changes Found in 118 Patients with Stargardt and 8 with CRD
Patient ID Mutations (Amino Acid Based) Sequence Change (Nucleotide Based) Het/Hom Other Sequence Changes
21 Null Mutations
071-004 Met1Val ATG → GTC Het None
035-002* Ser84(insCAAA) 30 251ins4 Het IVS36 + 1G → A
034-039 Ser84(insCAAA) 30 251ins4 Het Gly1961Glu
032-018 Arg152Ter 23 CGA → TGA Het Arg2107Cys
032-005 Ala222(del13bp) 666del13 [AAAGACGGTGCGC] Het None
032-039 Ala222(del13bp) 666del13 [AAAGACGGTGCGC] Het None
032-060 [Ser278(delT); Arg1300Gln] [832delT; CGA → CAA] Het Pro1486Leu
032-066* Lys356Ter AAG → TAG Het Gln1513(insC)
032-072 IVS13+ 2T → C Het Val77Glu
032-073 Arg681Ter 21 CGA → TGA Het Leu1388Pro
034-016 Ser1071(insGT) 31 3212insGT Het None
032-065 Ser1071(insGT) 31 3212insGT Het None
035-003 Ile1114(delC) 5 3340delC Het Pro1380Leu
007-014* IVS26+ 1G → A Het Asn1345(insCA)
007-014* Asn1345(insCA) 4034insCA Het IVS26+ 1G → A
032-066* Gln1513(insC) 4538insC Het Lys356Ter
032-010 Gln1513(insC) 4538insC Het None
032-024 Pro1570(delC) 16 4710delC Het Gly1961Glu
032-016 Thr1721 (delAC) delete AC @ nt 5161 Het Thr1525Met
035-002* IVS36+ 1G → A 23 Het Ser84(insCAAA)
034-031 Leu1741(del11) 5194del11 [GTGGTGGGCAT] Het Gly1961Glu
032-051 Trp1772Ter TGG → TGA Het None
032-022 IVS41-2delA Het Gly1961Glu
032-081* Val1973(delG) 5917delG Hom None
034-017 Gly2100(delG) 6300delG Het Gly1961Glu
55 Missense and One In-Frame Deletion
032-020 Cys54Tyr 15 TGC → TAC Het Gly863Ala
035-012 Cys54Tyr 15 TGC → TAC Het Arg1108Cys
071-007 Cys54Tyr 15 TGC → TAC Het Val935Ala
071-003 Asn58Lys AAC → AAG Het Leu1201Arg
032-069 Ala60Val 15 GCG → GTG Het None
032-028 Gly65Glu 16 GGA → GAA Het None
032-072 Val77Glu GTG → CAG Het IVS13+ 2T → C
034-013 Gln190His CAG → CAC Het Gly1961Glu
032-076 Leu244Pro CTG → CCG Hom None
032-012 Pro309Arg CCA → CGA Het Arg1300Gln
032-054 Phe525Cys TTT → TGT Het Ile1846Thr
032-046 Arg537Cys CGT → TGT Het Val989Ala
034-038 Arg537Cys CGT → TGT Het Gly863Ala
032-095 Leu541Pro 18 CTA → CCA Het None
034-022 Leu541Pro 18 CTA → CCA Het Leu2027Phe
035-001 Leu541Pro 18 CTA → CCA Het None
032-009 Leu541Pro 18 CTA → CCA Het None
032-023 [Leu541Pro 18 ; Ala1038Val 27 ] [CTA → CCA; GCC → GTC] Het Gly863Ala
034-035 [Leu541Pro 18 ; Ala1038Val 27 ] [CTA → CCA; GCC → GTC] Het Gly863Ala
032-011 Ala549Pro GCC → CCC Het Gly1961Glu
032-044 Gly550Arg GGA → AGA Het None
032-085 Arg602Gln CGG → CAG Het Val643Met
032-090 Gly607Arg GGG → AGG Het Leu2027Phe
032-085 Val643Met GTG → ATG Het Arg602Gln
032-042 Val767Asp 30 GTC → GAG Het Pro1486Leu
071-006 Val767Asp 30 GTC → GAG Het Ile1562Thr
032-014 Leu797Pro CTG → CCG Het Pro1486Leu
032-038 Trp821Arg 18 TGG → AGG Het None
034-045 Ile824Thr ATC → ACC Het Gly1961Glu
032-056 Gly863Ala 5 GGA → GCA Het None
032-091 Gly863Ala 5 GGA → GCA Het None
032-020 Gly863Ala 5 GGA → GCA Het Cys54Tyr
032-023 Gly863Ala 5 GGA → GCA Het [Leu541Pro; Ala1038Val]
034-011 Gly863Ala 5 GGA → GCA Het Cys1488Arg
034-015 Gly863Ala 5 GGA → GCA Het Thr1525Met
034-035 Gly863Ala 5 GGA → GCA Het [Leu541Pro; Ala1038Val]
034-036 Gly863Ala 5 GGA → GCA Het Cys2150Arg
034-038 Gly863Ala 5 GGA → GCA Het Arg537Cys
071-007 Val935Ala GTA → GCA Het Cys54Tyr
032-043 Arg943Trp CGG → TGG Het Arg1108Leu
032-046 Val989Ala GTT → GCT Het Arg537Cys
071-005 Arg1108Cys 18 CGC → TGC Het None
035-012 Arg1108Cys 18 CGC → TGC Het Cys54Tyr
032-043 Arg1108Leu 5 CGC → CTC Het Arg943Trp
032-097 Glu1122Lys 18 GAG → AAG Het None
035-019 Glu1122Lys 18 GAG → AAG Het None
071-003 Leu1201Arg 15 CTG → CGG Het Asn58Lys
032-012 Arg1300Gln CGA → CAA Het Pro309Arg
032-068 Arg1300Gln CGA → CAA Het None
032-013 Pro1380Leu 15 CCG → CTG Het Gly1961Glu
032-015 Pro1380Leu 15 CCG → CTG Het Gly1961Glu
032-027 Pro1380Leu 15 CCG → CTG Het Gly1961Glu
071-001 Pro1380Leu 15 CCG → CTG Hom None
034-020 Pro1380Leu 15 CCG → CTG Het Leu2027Phe
034-028 Pro1380Leu 15 CCG → CTG Het Gly1961Glu
034-044 Pro1380Leu 15 CCG → CTG Het Leu2027Phe
034-048 Pro1380Leu 15 CCG → CTG Het Gly1961Glu
035-003 Pro1380Leu 15 CCG → CTG Het Ile1114(delC)
032-073 Leu1388Pro CTG → CCG Het Arg681Ter
034-040 Trp1408Arg 15 TGG → CGG Het Arg1640Trp
035-013 Trp1408Arg 15 TGG → CGG Het Arg1640Trp
032-060 Pro1486Leu 20 CCA → CTA Het [Ser278(delT); Arg1300Gln]
032-014 Pro1486Leu 20 CCA → CTA Het Leu797Pro
032-025 Pro1486Leu 20 CCA → CTA Het Asp1531Asn
032-042 Pro1486Leu 20 CCA → CTA Het Val767Asp
034-011 Cys1488Arg 15 TGC → CGC Het Gly863Ala
032-034 Cys1490Tyr 15 TGC → TAC Het Ile1846Thr
032-084 Thr1525Met 15 ACG → ATG Het Arg2139Trp
032-016 Thr1525Met 15 ACG → ATG Het Thr1721(delAC)
032-021 Thr1525Met 15 ACG → ATG Het None
032-041 Thr1525Met 15 ACG → ATG Het None
034-015 Thr1525Met 15 ACG → ATG Het Gly863Ala
032-049 Asp1531Asn 15 GAC → AAC Het Gly1961Glu
034-019 Asp1531Asn 15 GAC → AAC Het None
032-025 Asp1531Asn 15 GAC → AAC Het Pro1846Leu
071-006 Ile1562Thr 27 ATT → ACT Het Val767Asp
034-040 Arg1640Trp 18 CGG → TGG Het Trp1408Arg
035-013 Arg1640Trp 18 CGG → TGG Het Trp1408Arg
032-030* Arg1640Gln CGG → CAG Hom None
032-019 Pro1776Leu CCC → CTC Het Gly1961Glu
032-034 Ile1846Thr 21 ATT → ACT Het Cys1490Tyr
032-054 Ile1846Thr 21 ATT → ACT Het Phe525Cys
032-011 Gly1961Glu 27 GGA → GAA Het Ala549Pro
032-013 Gly1961Glu 27 GGA → GAA Het Pro1380Leu
032-015 Gly1961Glu 27 GGA → GAA Het Pro1380Leu
032-019 Gly1961Glu 27 GGA → GAA Het Pro1776Leu
032-022 Gly1961Glu 27 GGA → GAA Het IVS41-2delA
032-024 Gly1961Glu 27 GGA → GAA Het Pro1570(delC)
032-027 Gly1961Glu 27 GGA → GAA Het Pro1380Leu
032-040 Gly1961Glu 27 GGA → GAA Het None
032-049 Gly1961Glu 27 GGA → GAA Het Asp1531Asn
034-013 Gly1961Glu 27 GGA → GAA Het Gln190His
034-017 Gly1961Glu 27 GGA → GAA Het Gly2100(delG)
034-021 Gly1961Glu 27 GGA → GAA Het None
034-025 Gly1961Glu 27 GGA → GAA Het None
034-028 Gly1961Glu 27 GGA → GAA Het Pro1380Leu
034-031 Gly1961Glu 27 GGA → GAA Het Leu1741(del11)
034-033 Gly1961Glu 27 GGA → GAA Het None
034-039 Gly1961Glu 27 GGA → GAA Het Ser84(insCAAA)
032-050 Gly1961Glu 27 GGA → GAA Het None
034-045 Gly1961Glu 27 GGA → GAA Het Ile824Thr
034-048 Gly1961Glu 27 GGA → GAA Het Pro1380Leu
032-003 Gly1977Ser 15 GGC → AGC Het Leu2027Phe
032-003 Leu2027Phe 5 CTC → TTC Het Gly1977Ser
032-090 Leu2027Phe 5 CTC → TTC Het Gly607Arg
034-006 Leu2027Phe 5 CTC → TTC Het None
034-020 Leu2027Phe 5 CTC → TTC Het Pro1380Leu
034-022 Leu2027Phe 5 CTC → TTC Het Leu541Pro
034-044 Leu2027Phe 5 CTC → TTC Het Pro1380Leu
035-011 Leu2027Phe 5 CTC → TTC Het None
032-063 Arg2030Gln 15 CGA → CAA Het None
032-093 Arg2030Gln 15 CGA → CAA Het None
071-002 Leu2035Pro CTT → CCT Het None
032-064 Val2050Leu 5 GTT → CTT Het None
032-061 Arg2107His 18 CGC → CAC Het None
032-018 Arg2107Cys CGC → TGC Het Arg152Ter
032-084 Arg2139Trp CGG → TGG Het Thr1525Met
007-009* Gly2146Asp GGC → GAC Het None
032-045 Cys2150Tyr 16 TGT → TGC Hom None
034-036 Cys2150Arg TGT → CGT Het Gly863Ala
034-026 Deletion Lys13-Trp15 38del9 [AGAACTGGA] Het None
034-037 Deletion Lys13-Trp15 38del9 [AGAACTGGA] Het None
Polymorphisms and Rare Variants Sequence Change Alleles Among 126 Patients (n) Alleles Among Controls (n) P , †
6 Nonpathogenic Missense Changes
Arg212His 23 CGC → CAC 8 10/(188) 0.3
His423Arg 23 CAC → CGC 34 14/(178) 0.09
Arg943Gln 27 CGG → CAG 15 9/(190) 0.7
Ala1637Thr GCC → ACC 1 Not determined
Asn1868Ile 21 AAT → ATT 41 50/(170) 0.002
Pro1948Leu 21 CCA → CTA 10 4/(190) 0.4
35 Intron and Isocoding Changes
Pro47Pro CCG → CCA
IVS3− 71delA
IVS3+ 20C → T
IVS3+ 26A → G
IVS3+ 92A → G
IVS6− 32T → C 23
Thr311Thr ACC → ACT
IVS9− 14C → T
IVS10+ 6insC
IVS10+ 11delG
Ala626Ala GCG → GCA
Leu988Leu CTC → CTT
IVS22− 34A → G
Pro1401Pro 21 CCC → CCA
IVS32− 38C → T 23
IVS32− 15C → T
IVS33− 16delGT 23
IVS35− 32G → A
IVS38− 50delA
IVS38− 10T → C
IVS39+ 6del12
[TGGTAGCCGAGG]: ins11
[CGGTCGAGGGC]
IVS40 − 25A → C
Leu1894Leu 21 CTG → CTC
IVS41− 10A → G
Leu1938Leu 23 TTA → TTG
Pro1948Pro 21 CCA → CCG
Ile2023Ile ATC → ATT
Ile2083Ile 27 ATC → ATT
IVS45+ 7G → A 32
Asp2095Asp 21 GAT → GAC
IVS48+ 21 C → T
IVS48− 3 T → C
IVS49− 85 C → T
IVS49+ 28 G → C
Val2244Val GTG → GTA
Table 2.
 
Missense Changes Found in Patients with No Other Detected ABCR Changes
Table 2.
 
Missense Changes Found in Patients with No Other Detected ABCR Changes
Patient ID Missense Change Mouse abc1 34 Mouse abc2 34 Human ABCC 35
032-069 Ala60Val Ala N/A Glu
032-028 Gly65Glu Gly N/A Leu
032-044 Gly550Arg* Gly N/A N/A
032-038 Trp821Arg, ‡ Trp N/A Trp
035-019, 032-097 Glu1122Lys Glu Glu Glu
032-063, 032-093 Arg2030Gln, † Arg Arg Arg
071-002 Leu2035Pro Phe Leu Met
032-064 Val2050Leu Phe Val Cys
032-061 Arg2107His Arg Arg Arg
007-009 Gly2146Asp, ‡ Gly Gly Gly
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×