April 2014
Volume 55, Issue 13
Free
ARVO Annual Meeting Abstract  |   April 2014
Imaging crystalline lens microscopic structures of intact in vitro mammal lenses using confocal microscopy
Author Affiliations & Notes
  • Judith Birkenfeld
    CSIC-Instituto de Optica, Madrid, Spain
  • Jorge Lamela
    CSIC-Instituto de Optica, Madrid, Spain
  • Sergio Ortiz
    CSIC-Instituto de Optica, Madrid, Spain
  • Susana Marcos
    CSIC-Instituto de Optica, Madrid, Spain
  • Footnotes
    Commercial Relationships Judith Birkenfeld, None; Jorge Lamela, None; Sergio Ortiz, None; Susana Marcos, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science April 2014, Vol.55, 3783. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Judith Birkenfeld, Jorge Lamela, Sergio Ortiz, Susana Marcos; Imaging crystalline lens microscopic structures of intact in vitro mammal lenses using confocal microscopy. Invest. Ophthalmol. Vis. Sci. 2014;55(13):3783.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract
 
Purpose
 

To image microscopic structures of the intact in vitro mammal crystalline lens using confocal microscopy.

 
Methods
 

Rabbit eyes were obtained from a local slaughterhouse and transported at a temperature around 4°C. The cornea was removed from the eye 2-24h post-mortem, and the eye was placed in a cuvette and used immediately for imaging. Measurements were done with a custom made optical microscope, which can operate alternately or simultaneously as a confocal microscope or a multiphoton microscope. The microscope is equipped with two lasers, one diode laser at 488 nm and a Ti: Sapphire femtosecond laser tunable over a range of wavelengths between 670 nm and 1040 nm, and two detection channels. Images were obtained with an air objective (MPLAN, 50x, NA 0.75, Olympus). The anterior pole of the lens was imaged, and volumes of images were obtained around the lens apex. All measurements were done on intact lenses with the capsule still attached to the lens zonulae.

 
Results
 

A z-scan through the lens allowed identifying distinct regions of the intact crystalline lens: the lens capsule, a thin epithelium layer, and the lens fibers. The lens capsule was seen as a striated structure with an estimated thickness of 10 μm. The structures were oriented, and usually parallel to each other, with an average inter distance of 1.6 μm square. The lens epithelium appeared as a thin cell layer below the lens capsule, with cells of approximately 9 μm in diameter. The lens fibers appeared as elongated, tightly packed fibers with an estimated thickness of 2-3 μm, and a predominant orientation, with all fibers located parallel to each other within the imaged volume.

 
Conclusions
 

The potential of confocal light microscopy (CLM) in the anterior pole of the eye lenses was demonstrated by performing an in vitro study of in eye intact rabbit lenses. This method is suitable for quantifying the lens structures in the intact crystalline lens, holding promise for applications in vivo and for microscopic analysis of the lens under accommodative forces.

 
 
Lens capsule structure (a), lens epithelium (b), and cortical lens fibers near the apex of an intact in vitro rabbit lens.
 
Lens capsule structure (a), lens epithelium (b), and cortical lens fibers near the apex of an intact in vitro rabbit lens.
 
Keywords: 596 microscopy: confocal/tunneling • 551 imaging/image analysis: non-clinical  
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×